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344 M. QUEFFÉLEC ET O. RAMARÉ

v{C{âi,... âj0)) < 2jvm x • • • x vm)(C{à15..., àjJ) ;

nous en déduisons que

• • • 5 ÙpjQ)) — 2Pvm(C(ßIi - • • 5 ^m)) ' ' ' ^m(C(^(À —l)m+l • • • ^Àra))

Pour finir, nous remarquons que 22XÔ+P 2A(2<5+1/^o), puis que 2(2<5+1^o) <
8 < Ew((5) par choix de m.

Nous établissons trois lemmes sur des intégrales oscillantes. Les deux

premiers portent sur la mesure de Lebesgue alors que le dernier est une idée

originale de Kaufman.

LEMME 5.1. Si f est C2 sur [0,1], vérifie > a et \f"(t)\ < b,
alors nous avons

avec la notation usuelle e(x) exp(2fo;).

Il s'agit là d'une version intégrale modifiée du lemme de Kuzmin-Landau,
aussi ce que l'on nomme de façon informelle «le critère de la dérivée

première».
Le second lemme s'applique lorsque fit) s'annule dans l'intervalle en

question.

LEMME 5.2. Si f est C2 sur [0,1] et fit) (at + ß)g(t) où g vérifie
\git)\ > a et \g'{t)\ < b avec b > a, alors nous avons

Classiquement, la méthode de la phase stationnaire donnerait une contribution

de l'ordre de 1 /^/f"i~ß/a), lorsque b/a est de l'ordre de 1, et c'est
bien ce que donne notre lemme.

Le dernier lemme permet de comparer l'intégrale d'une fonction par rapport
à deux mesures distinctes.

< C~2522X5+pI.m(Srxhö.
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LEMME 5.3. Soit F une fonction C1 sur [0,1] bornée en valeur absolue

par 1 et telle que |E7(Y)| < M. Notons m2 /q \F(t)\2dt. Soit ensuite X une

mesure de probabilité sur [0,1] et notons par A(u) le maximum des À|Y, t+u]
pour tout t dans [0,1 — u\. Nous avons alors pour tout r > 0

[ \F(t)\dX <2r + A(r/M)(l + m2Mr~3).

Démonstration. Recouvrons [0,1] par au plus M/r intervalles disjoints
de longueur r/M. Il reste au plus un intervalle de plus petite longueur. Soit
N le nombre de ces intervalles sur lesquels sup|F(Y)| > 2r. En utilisant le
théorème des accroissements finis, nous constatons que \F(t)\ > r sur tous
les intervalles considérés. Par conséquent

m2 > Nr2
~ M

Il vient

[ \F(t) \ dX < 2r + (N + l)A(r/AQ
Jo

< 2r + A(r/M)(l + m2Mr~3).

6. Estimation de la transformée de Fourier

Nous nous occupons ici du comportement asymptotique de

ß(u) — / e(ut)dß(t)
Jo

pour \u\ grand; nous supposerons, sans rectriction, u positif.
Commençons par rappeler que si a [0; au a2,... ] et t TJ(x)

[0, aj.|_i j... ]

[0;aua2,...,aj + t]
Pj + tPj-i
Qj + tQj-1

Qj (Qj + tQj_i)Qj
'

Partons donc de J JcJq fixe: par construction, nous pouvons décomposer
notre mesure p sous la forme

F y x • • • x vt xp := pk x p
k
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