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UNE PREUVE DU THÉORÈME DE LIOUVILLE

EN GÉOMÉTRIE CONFORME DANS LE CAS ANALYTIQUE

par Charles Frances

1. Introduction

Le théorème de Liouville est un résultat fondamental de géométrie

conforme, que l'on peut énoncer comme suit:

THÉORÈME 1 (Liouville). Une application conforme entre ouverts de R"
0n > 3) est obtenue comme restriction d'une composée de similitudes et

d'inversions.

On obtient comme corollaire que tout difféomorphisme conforme entre
deux ouverts de la sphère S" est la restriction d'un (unique) difféomorphisme
conforme global de Sn. Ce résultat peut aussi se voir comme une manifestation

particulière d'un phénomène général: la rigidité des applications conformes

en dimension supérieure ou égale à trois (une exposition très générale de

ces propriétés de rigidité est donnée dans [St]). On dispose de nombreuses

démonstrations du théorème de Liouville (voir entre autres [Sp], [J] ou [M])
et dans la plupart des cas, elles s'articulent en deux parties. On commence

par montrer que si un difféomorphisme / entre ouverts de Rn est conforme,
il envoie localement les (n — 1)-sphères sur des (n — 1)-sphères (cela signifie
que tout point du domaine de définition de / possède un voisinage tel que
toute (n — 1)-sphère incluse dans ce voisinage est envoyée par / sur une
(n — 1)-sphère). Une fois ce fait établi, on conclut de façon classique grâce à

un lemme dû à Möbius.

LEMME 2 (Möbius). Si une application f entre deux ouverts U et V de
Rn envoie localement les (n — 1 )-sphères de U sur des (n — 1 )-sphères de V,
alors f est la restriction à U d'une composée de similitudes et d'inversions.
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Nous renvoyons à [Sp] (vol. 3, p. 310) pour une preuve de ce lemme.

Précisons que le cœur de la démonstration du théorème de Liouville réside

vraiment dans la première étape, consistant à prouver qu'un difféomorphisme
conforme envoie localement les (n — 1)-sphères sur des (n — 1)-sphères. Ce

résultat est généralement obtenu par des calculs et il est difficile d'isoler
une raison conceptuelle pour laquelle il est vrai. Aussi se propose-t-on de

faire le lien entre cette propriété et un résultat profond mais a priori sans

rapport: l'invariance conforme des géodésiques isotropes en géométrie pseudo-
riemannienne ou riemannienne complexe.

Notre preuve s'applique à des transformations conformes analytiques entre

ouverts de Rn. Les preuves classiques (par exemple [M]) requièrent en général

une régularité C3 et on peut trouver dans [H] une preuve plus difficile qui
traite le cas des applications de classe C1.

2. Invariance conforme des géodésiques isotropes

Rappelons qu'une métrique pseudo-riemannienne g sur une variété M est

la donnée d'une forme quadratique non dégénérée de signature (p, q) sur

chaque espace tangent à M. Nous supposons par la suite que g n'est pas

riemannienne, c'est-à-dire que ni p ni q ne sont nuls.

Une géodésique t i-A c{t) pour la métrique g est qualifiée d'isotrope si

pour tout t où c(t) est défini, on a gc(t)(cf(t),cf(t)) — 0. Si l'on se donne une

métrique g' dans la classe conforme de g (c'est à dire g' eag pour a une
fonction de M dans R de même régularité que g les géodésiques de g' et

de g n'ont en général aucun rapport. Néanmoins, on peut montrer le

THÉORÈME 3. Soit (M, g) une variété pseudo-riemannienne; alors les

géodésiques isotropes sont les mêmes, en tant que lieux géométriques, pour
toutes les métriques de la classe conforme de g.

Remarquons que ce théorème ne dit pas que les géodésiques isotropes sont

les mêmes en tant que courbes paramétrées.

Preuve. Nous rappelons sommairement comment on peut voir le flot

géodésique sur une variété comme un flot hamiltonien (le lecteur souhaitant

plus de détails peut se référer à [AM]). On note T*M le fibré cotangent
de M et cv la forme symplectique standard sur T*M. La donnée d'une
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métrique pseudo-riemannienne g sur M fournit en tout point x de M un

isomorphisme ix de T*M dans TXM. On peut alors associer à la métrique g

un Hamiltonien H sur T*M donné par H(x, Q gx(h(OÙx(0)» ainsi qu'un

gradient symplectique X vérifiant d(X^)H( cü(X}q(X, Les projections sur

M des trajectoires du flot ft associé au champ X sont les géodésiques de la

métrique g. On peut faire la même construction avec une métrique g' dans la

classe conforme de g, et on obtient ainsi un Hamiltonien H' et un gradient
1 symplectique X'. Comme g et g' sont conformément équivalentes, pour tout

x dans M et tout dans T*M, les vecteurs ix(Ç) et ifx(Q sont colinéaires,

et par conséquent, les lieux d'annulation de H et H' sont les mêmes. Ils

consistent en une hypersurface singulière Xo C T*M, qui est laissée invariante

par l'action des flots ft et ftf. Notons que les points où X0 est régulière
j sont exactement le complémentaire dans Xo de la section nulle. Maintenant,

on remarque qu'en un point (x, Ç) où Xo est régulière, les vecteurs X(x, Q et

i X'(x, Q sont tous deux orthogonaux, pour la forme lu, à l'espace tangent en

(x, Q à Xo. Comme eu est non dégénérée et que 7qc,C)Xo est de codimension
1 dans T{xX)(T*M), c'est qu'ils sont colinéaires. On en conclut que X et Xr

sont toujours colinéaires sur X0 puisqu'ils le sont sur un ouvert dense de X0.

Par conséquent, les trajectoires des flots ft et ft1 sur Xq sont identiques en

tant que lieux géométriques, ce qui achève la preuve.

En fait, on peut étendre ce théorème à d'autres cadres. Considérons

par exemple une variété complexe M munie d'une métrique riemannienne

holomorphe g (c'est-à-dire d'un champ holomorphe de formes quadratiques
complexes non dégénérées sur M). On peut définir la classe conforme de

g comme l'ensemble des métriques de la forme Xg avec À une fonction
holomorphe de M dans C qui ne s'annule pas. Il existe de même une notion de

géodésiques pour la métrique g, qui seront des courbes à paramètre complexe
\ z c(z). On définit les géodésiques isotropes comme précédemment. Avec

ces définitions, la démonstration du théorème 3 s'adapte au cadre complexe
et on peut affirmer que les géodésiques isotropes de toutes les métriques de

la classe conforme de g sont identiques, en tant que lieux géométriques.

On peut maintenant énoncer le

COROLLAIRE 4. Une application conforme entre deux variétés pseudo-
riemanniennes (resp. entre deux variétés complexes munies de structures
riemanniennes holomorphes) M et N envoie les géodésiques isotropes de

M sur les géodésiques isotropes de N.
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3. Une application: le théorème de Liouville
DANS LE CAS ANALYTIQUE

Nous allons maintenant appliquer la propriété d'invariance conforme des

géodésiques isotropes au cadre riemannien. Cela semble un petit peu incongru
puisque dans ce cas, bien sûr, il n'y a pas de courbes isotropes. Néanmoins,
lorsque la variété considérée est analytique, un bon moyen d'en faire apparaître
est de tout complexifier. Aussi commençons-nous par quelques rappels sur la

complexification.
Soit x (x\,..., xn) un point de Rn et B(x, r) la boule euclidienne ouverte

de centre x et de rayon r. On note B(x, r) la boule ouverte de Cn de centre

x et de rayon r. Considérons une série

oo

y] y: bai...an(xi-^)ai
i=0 a H \-an=i

qui converge pour tout (xj,.... xn) de B(a, r).
Alors la série

oo

£ y3 bai...an(z\-ai)"1
i=0 c^iH 1- an=i

converge pour tout (zi,... ,zn) de B(a, r).
Maintenant, si / est une application analytique définie sur un ouvert

connexe U de Rn à valeurs dans R, on peut la complexifier sur des boules
de rayon assez petit dans U. Cela permet de définir une extension globale /
de / à un ouvert U de Cn contenant U.

Lorsque / est une application analytique à valeurs dans un espace vectoriel
de dimension finie, on peut également la complexifier en appliquant le procédé

précédent à chaque fonction coordonnée (l'ouvert U n'est a priori pas le même

pour toutes les fonctions coordonnées mais comme elles sont en nombre fini,
on peut en trouver un commun). Ainsi, n'importe quel tenseur analytique

(métrique pseudo-riemannienne, structure conforme, structure symplectique)
défini sur un ouvert de Rn peut se complexifier en un tenseur holomorphe
sur un ouvert de Cn. Par analyticité, certaines propriétés se conservent lors
de la complexification. Par exemple toute application conforme analytique /
de (U,g) dans (V\g') se complexifie en / conforme et holomorphe de (U,g)
dans (V,gf).

Nous allons à présent montrer la proposition suivante, qui donne directement

le théorème de Liouville grâce au lemme de Möbius. On note gcan la

métrique euclidienne sur Rn.
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Proposition 5. Pour n > 3, une application f conforme et analytique

entre deux ouverts U et V de (Rn,gcan) envoie localement les (n -Y)-sphères
de U sur les (n — 1 )-sphères de V.

Preuve. L'application / est analytique: on peut donc la complexifier en

/ de U sur V. De même, la métrique canonique restreinte à [/ et à V

se complexifie en gcm sur U et V (c'est en fait la restriction à ces deux

ouverts de la forme quadratique complexe zj + ••• + zl). Le corollaire 4

permet d'affirmer que / envoie les géodésiques isotropes de (U,gcan) sur les

géodésiques isotropes de (V,gcan). Or les géodésiques pour la métrique gcm

sont les droites complexes affines de Cn, c'est-à-dire les courbes +
avec a et b dans Cn. Par conséquent, si u (u\..., un) appartient à U et

v (ui,..., vn) est l'image de u par /, alors / doit envoyer l'intersection
du cône Cu d'équation Y^j= î (zj ~ uj)2 0 avec ^ sur l'intersection du cône

Cv d'équation Y2j=i (zj ~~ vj)2 — 0 avec V.
On note, pour tout j, uj — uy + iu2j et on prend x (xi,.. » %xn) un point

de Cu H Rn. Ce point doit vérifier (xj ~ uj)2 0, ce qui se traduit par
deux conditions.

La première s'écrit Y^j= i (xj ~ uij)2 — î u2j et indique que x appartient

à la (n— 1)-sphère de centre pu — (u\\,..., u\n) et de rayon (u\x + • • • + u\n)2

La seconde s'écrit J2j= î uy(xi ~ wi/) 0 et dit que x appartient à

l'hyperplan affine passant par pu et orthogonal à la direction (u2y u2n).

Ainsi CwnR" est une (n—2)-sphère centrée en pu et de rayon (u\{ + • • • + u\n)2.
Comme u est dans U, le point pu appartient à U. En faisant décrire

9 9
1

a (mJj H h «2n)2 un Petit intervalle autour de 0, on obtient toutes les
(n — 2) -sphères centrées en pu de rayon suffisament petit.

Ceci montre qu'il existe un voisinage de pu tel que toute (n - 2)-sphère
contenue dans ce voisinage est envoyée par / sur une (n - 2)-sphère de V.
Par intersection, on en déduit que / envoie localement les cercles sur des

cercles, et on conclut la preuve grâce au

LEMME 6. Un difféomorphisme entre deux ouverts U et V de Rn qui
envoie localement cercles sur cercles, envoie localement (n — 1)-sphères sur
{n — 1) -sphères.

Preuve. Soit p un point de U. Par hypothèse, il existe un voisinage Up
de p tel que tout cercle inclus dans Up est envoyé par / sur un cercle. On
considère une sphère S incluse dans Up et on choisit deux points antipodaux
Xyv et xs sur S. L'image E =f(S) est une hypersurface lisse incluse dans V.
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On choisit p une inversion de pôle f(xN). Comme S est la réunion des cercles
de S passant par xn et xs, p(L\{/(xm)}) est réunion de droites passant par
P0f(xs). C'est un cône de codimension 1, de sommet pof(xs) et lisse en

p°/fe), donc un hyperplan. On en déduit que S\{/(x^)} est une sphère

privée du point f(xN), ce qui achève la preuve.

Remarque 7. Dans le cas n 2 la démonstration est mise en défaut

puisque Cu p| R2 est en général réduit à deux points.
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