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UNE PREUVE DU THEOREME DE LIOUVILLE
EN GEOMETRIE CONFORME DANS LE CAS ANALYTIQUE

par Charles FRANCES

1. INTRODUCTION

Le théoréme de Liouville est un résultat fondamental de géométrie
conforme, que I’on peut énoncer comme suit:

THEOREME 1 (Liouville). Une application conforme entre ouverts de R"
(n > 3) est obtenue comme restriction d’une composée de similitudes et
d’inversions.

On obtient comme corollaire que tout difféomorphisme conforme entre
deux ouverts de la sphere S" est la restriction d’un (unique) difféomorphisme
conforme global de S™*. Ce résultat peut aussi se voir comme une manifestation
particuliere d’un phénomene général: la rigidité des applications conformes
en dimension supérieure ou égale a trois (une exposition tres générale de
ces propriétés de rigidité est donnée dans [St]). On dispose de nombreuses
démonstrations du théoreme de Liouville (voir entre autres [Sp], [J] ou [M])
et dans la plupart des cas, elles s’articulent en deux parties. On commence
par montrer que si un difféomorphisme f entre ouverts de R" est conforme,
il envoie localement les (n — 1)-spheres sur des (n — 1)-spheres (cela signifie
que tout point du domaine de définition de f posseéde un voisinage tel que
toute (n — 1)-sphere incluse dans ce voisinage est envoyée par f sur une
(n — 1)-sphere). Une fois ce fait €tabli, on conclut de fagon classique grice a
un lemme did a Mobius.

LEMME 2 (Mobius). Si une application [ entre deux ouverts U et V de
R" envoie localement les (n—1)-spheres de U sur des (n— 1)-sphéres de V,
alors f est la restriction a U d’une composée de similitudes et d’inversions.
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Nous renvoyons a [Sp] (vol.3, p.310) pour une preuve de ce lemme.

Précisons que le cceur de la démonstration du théoréme de Liouville réside
vraiment dans la premiere étape, consistant a prouver qu'un difféomorphisme
conforme envoie localement les (n — 1)-spheres sur des (n — 1)-spheres. Ce
résultat est généralement obtenu par des calculs et il est difficile d’isoler
une raison conceptuelle pour laquelle il est vrai. Aussi se propose-t-on de
faire le lien entre cette propriété et un résultat profond mais a priori sans
rapport : ’invariance conforme des géodésiques isotropes en géométrie pseudo-
riemannienne ou riemannienne complexe.

Notre preuve s’applique a des transformations conformes analytiques entre
ouverts de R". Les preuves classiques (par exemple [M]) requierent en général
une régularité C° et on peut trouver dans [H] une preuve plus difficile qui
traite le cas des applications de classe C!.

2. INVARIANCE CONFORME DES GEODESIQUES ISOTROPES

Rappelons qu’une métrique pseudo-riemannienne g sur une variété M est
la donnée d’une forme quadratique non dégénérée de signature (p,q) sur
chaque espace tangent a M. Nous supposons par la suite que g n’est pas
riemannienne, c’est-a-dire que ni p ni g ne sont nuls.

Une géodésique ¢ — c(f) pour la métrique g est qualifiée d’isotrope si
pour tout ¢ ol c(f) est défini, on a g.»(c’(1),c'(r)) = 0. Si I’on se donne une
métrique ¢’ dans la classe conforme de g (c’est a dire ¢’ = ¢“g pour o une
fonction de M dans R de méme régularité que g), les géodésiques de ¢’ et
de ¢ n’ont en général aucun rapport. Néanmoins, on peut montrer le

THEOREME 3. Soit (M,g) une variété pseudo-riemannienne, alors les
géodésiques isotropes sont les mémes, en tant que lieux géométriques, pour
toutes les métriques de la classe conforme de g.

Remarquons que ce théoreme ne dit pas que les géodésiques isotropes sont
les mémes en tant que courbes paramétrées.

Preuve. Nous rappelons sommairement comment on peut voir le flot
géodésique sur une variété comme un flot hamiltonien (le lecteur souhaitant
plus de détails peut se référer a [AM]). On note T*M le fibré cotangent
de M et w la forme symplectique standard sur 7°M. La donnée d’une
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métrique pseudo-riemannienne ¢ sur M fournit en tout point x de M un
isomorphisme i, de T*M dans T,M. On peut alors associer a la métrique g
un Hamiltonien H sur T*M donné par H(x, () = gx(ix({),x(¢)), ainsi qu’un
gradient symplectique X vérifiant d o H( ) = we (X, ). Les projections sur
M des trajectoires du flot ¢’ associé au champ X sont les géodésiques de la
métrique ¢. On peut faire la méme construction avec une métrique g’ dans la
classe conforme de g, et on obtient ainsi un Hamiltonien H’ et un gradient
symplectique X'. Comme ¢ et g’ sont conformément équivalentes, pour tout
x dans M et tout ¢ dans TM, les vecteurs i,(¢) et iL(¢) sont colin€aires,
et par conséquent, les lieux d’annulation de H et H' sont les mémes. Ils
consistent en une hypersurface singuliere X9 C T*M, qui est laissée invariante
par I'action des flots ¢' et ¢''. Notons que les points ol Xy est réguliere
sont exactement le complémentaire dans X, de la section nulle. Maintenant,
on remarque qu’en un point (x,() ou X, est réguliere, les vecteurs X(x, () et
X'(x,() sont tous deux orthogonaux, pour la forme w, a I’espace tangent en
(x,{) a Xo. Comme w est non dégénérée et que T( 2o est de codimension
1 dans T o (T*M), c’est qu’ils sont colinéaires. On en conclut que X et X’
sont toujours colinéaires sur X, puisqu’ils le sont sur un ouvert dense de 2.
Par conséquent, les trajectoires des flots ¢’ et ¢'' sur ¥, sont identiques en
tant que lieux géométriques, ce qui acheve la preuve. [

En fait, on peut étendre ce théoreme a d’autres cadres. Considérons
par exemple une variété complexe M munie d’une métrique riemannienne
holomorphe ¢ (c’est-a-dire d’un champ holomorphe de formes quadratiques
complexes non dégénérées sur M). On peut définir la classe conforme de
g comme l’ensemble des métriques de la forme Ag avec A\ une fonction
holomorphe de M dans C qui ne s’annule pas. Il existe de méme une notion de
g€odésiques pour la métrique g, qui seront des courbes a paramétre complexe
z = ¢(z). On définit les géodésiques isotropes comme précédemment. Avec
ces définitions, la démonstration du théoreme 3 s’adapte au cadre complexe
et on peut affirmer que les géodésiques isotropes de toutes les métriques de
la classe conforme de g sont identiques, en tant que lieux géométriques.

On peut maintenant énoncer le

COROLLAIRE 4. Une application conforme entre deux variétés pseudo-
riemanniennes (resp. entre deux variétés complexes munies de structures
riemanniennes holomorphes) M et N envoie les géodésiques isotropes de
M sur les géodésiques isotropes de N.
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3. UNE APPLICATION: LE THEOREME DE LIOUVILLE
DANS LE CAS ANALYTIQUE

Nous allons maintenant appliquer la propriété d’invariance conforme des
géodésiques isotropes au cadre riemannien. Cela semble un petit peu incongru
puisque dans ce cas, bien siir, il n’y a pas de courbes isotropes. Néanmoins,
lorsque la variété considérée est analytique, un bon moyen d’en faire apparaitre
est de tout complexifier. Aussi commengons-nous par quelques rappels sur la
complexification.

Soit x = (x,...,x,) un point de R” et B(x, r) la boule euclidienne ouverte
de centre x et de rayon r. On note E(x, r) la boule ouverte de C" de centre
x et de rayon r. Considérons une série

00
Z Z ba[...an(xl —ap)™ ... (x, —a)™

i=0 ajtFa,=i
qui converge pour tout (x;,...,x,) de B(a,r).
Alors la série

o0
Z Z bal...an(ZI — al)al e (Zn — an)an

i=0 a+ oy =i

converge pour tout (zp,...,z,) de B\(a, r).

Maintenant, si f est une application analytique définie sur un ouvert
connexe U de R" a valeurs dans R, on peut la complexifier sur des boules
de rayon assez petit dans U. Cela permet de définir une extension globale f
de f a un ouvert U de C" contenant U.

Lorsque f est une application analytique a valeurs dans un espace vectoriel
de dimension finie, on peut également la complexifier en appliquant le procédé
précédent a chaque fonction coordonnée (I’ouvert U n’est a priori pas le méme
pour toutes les fonctions coordonnées mais comme elles sont en nombre fini,
on peut en trouver un commun). Ainsi, n’importe quel tenseur analytique
(métrique pseudo-riemannienne, structure conforme, structure symplectique)
défini sur un ouvert de R"” peut se complexifier en un tenseur holomorphe
sur un ouvert de C". Par analyticité, certaines propriétés se conservent lors
de la complexification. Par exemple toute application conforme analythue f
de (U, g) dans (V,g’) se complexifie en f conforme et holomorphe de (U g)
dans (V g’ ). ‘

Nous allons a présent montrer la proposition suivante, qui donne directe-
ment le théoreme de Liouville grice au lemme de Mobius. On note g, la
métrique euclidienne sur R”.
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PROPOSITION 5. Pour n > 3, une application f conforme et analytique
entre deux ouverts U et V de (R", gean) envoie localement les (n—1)-spheres
de U sur les (n — 1)-spheres de V.

Preuve. L’ apphcatlon f est analytique: on peut donc la complexifier en
f de U sur V. De méme, la metrlque canonique restreinte a U et a V

se complexifie en oy SUr UetV (c’est en fait la restriction a ces deux
ouverts de la forme quadratique complexe z2 + --- -+ z2). LE corollaire 4
permet d’affirmer que ]? envoie les géodésiques isotropes de (U, gcan) sur les
géodésiques isotropes de (V, Jean) . Or les géodésiques pour la métrique Jean
sont les droites complexes affines de C", c’est-a-dire les courbes z — a + bz
avec a et b dans C". Par conséquent, si u = (ul, ...,u,) appartient a U et
v = (vy,...,v,) est I'image de u par f alors f d01t envoyer 1’intersection
du cone Cu d’équation ijl (z — uj)* = 0 avec U sur I’intersection du cone
C, d’équation Y 7, (z; — v;)* =0 avec V.

On note, pour tout j, u; = uyj + iup; et on prend x = (x1,...,x,) un point
de C,NR". Ce point doit vérifier Y 7, (x; — u;)*> =0, ce qui se traduit par
deux conditions.

La premiere s’écrit 2;21 (o — uyy)* = Zj';l u%j et indique que x appartient

1
ala (n—1)-sphere de centre p, = (41, ..., u;,) et de rayon (u%l = wwe - u%n)2 .
La seconde s’écrit 27:1”2.1'(’?1‘ —uy;)) = 0 et dit que x appartient a
I’hyperplan affine passant par p, et orthogonal a la direction (uyy,...,us,).
1

Ainsi C,NR" est une (n—2)-sphére centrée en p, et de rayon (13, + - - - + us )? .

Comme u est dans U, le point p, appartient a U. En faisant décrire

a (us; +-+ u%n)% un petit intervalle autour de 0, on obtient toutes les
(n — 2)-spheres centrées en p, de rayon suffisament petit.

Ceci montre qu’il existe un voisinage de p, tel que toute (n — 2)-sphere
contenue dans ce voisinage est envoyée par f sur une (n — 2)-sphére de V.
Par intersection, on en déduit que f envoie localement les cercles sur des
cercles, et on conclut la preuve grace au

LEMME 6. Un difféomorphisme entre deux ouverts U et V de R" qui
envoie localement cercles sur cercles, envoie localement (n — 1)-sphéres sur
(n — 1)-spheres.

Preuve. Soit p un point de U. Par hypothese, il existe un voisinage U,
de p tel que tout cercle inclus dans U, est envoyé par f sur un cercle. On
considere une sphere § incluse dans U, et on choisit deux points antipodaux
xy et xs sur §. L'image X = f(S) est une hypersurface lisse incluse dans V.
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On choisit p une inversion de pole f(xy). Comme S est la réunion des cercles
de S passant par xy et xs, p(Z\{f(xy)}) est réunion de droites passant par
p o f(xs). C’est un cdne de codimension 1, de sommet p o f(xs) et lisse en
p o f(xs), donc un hyperplan. On en déduit que X\{f(xy)} est une sphere
privée du point f(xy), ce qui achéve la preuve. [

REMARQUE 7. Dans le cas n = 2 la démonstration est mise en défaut
puisque C,[|R? est en général réduit & deux points.
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