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Figure 6

Singularités permises dans l'isotopie entre deux fronts

Le nombre de cusps d'un front, comptés avec leur signe (positif pour les

cusps montants, négatif pour les cusps descendants), le nombre de Maslov,

est invariant par isotopies legendriennes.

3.2 Décompositions admissibles (d'après Chekanov et Pushkar)

Dans cette section on rappelle brièvement la construction d'un nouvel
invariant des nœuds legendriens, dû à Yu. Chekanov et P. Pushkar, qui permettra
d'établir une caractérisation géométrique de la solution de minimax.

La projection d'un nœud legendrien de JlR dans 7°R par tï\ est un front
fermé. Soit X un tel front, générique.

On appelle décomposition de X des courbes X\,,.., Xn fermées, ayant un
nombre fini d'auto-intersections, telles que pour i / j, Xi DXj contient un
nombre fini de points, et X\ U • • • U Xn X.

Un point double x G X; fl Xj de X est un point de saut si Xi et Xj ne sont

pas lisses en x, de Maslov si le nombre de cusps (comptés avec leur signe)
qui séparent le long du front les deux branches se coupant en x est 0.

Définition. Une décomposition (Xi,..., Xn) de X est admissible si :

(1) chaque X/ est homéomorphe au bord d'un disque: dXt Bt ;

(2) pour tout i G {1, q G R, l'ensemble

Bi(q) := {z £ R | (q,z) C Bt}

est connexe; en particulier si c'est un point, ce point est un cusp du front;
(3) si (qo,z) G Xi D Xj (i ^ j) est un point de saut alors pour q ^ q0,

assez proche q0, l'ensemble Bi(q)nBi(q) est soit Bt{q), soit Bj(q), soit vide;
(4) les points de sauts sont tous de Maslov.
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Remarques.
(1) Il suit des conditions (1) et (2) que chaque courbe Xt a exactement

deux cusps, qui divisent la courbe en deux parties, que l'on note af et af
(avec la convention suivante : pour tout (q, zf) G af générique, on a zf < zf

(2) La condition (3) équivaut à demander qu'aucun point de saut ne réalise
l'une des configurations interdites montrées à la Figure 7.

(I) OD (III)

Figure 7

Configurations interdites autour des points de saut

Notons par #ÇD) le nombre de courbes Xt et par #(§) le nombre de points
de saut dans une décomposition admissible V du front X.

Théorème de Chekanov-Pushkar ([Ch2], [C-P]). Le nombre de

décompositions admissibles d'un front projection d'un nœud legendrien est

invariant par isotopies legendriennes du nœud; de plus, le nombre #ÇD) — #(S)

est constant le long de l'isotopie.

Exemple 3.1. La Figure 8 montre deux décompositions d'un front
générique, projection d'un nœud legendrien. Le front est isotope au front
lèvre (le front ayant deux cusps et aucune auto-intersection), donc; d'après le

théorème de Chekanov-Pushkar, la décomposition (1) est la seule admissible.

Figure 8
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