Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 49 (2003)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CARACTÉRISATION GÉOMÉTRIQUE DES SOLUTIONS DE

MINIMAX POUR L'ÉQUATION DE HAMILTON-JACOBI

Autor: Capitanio, Gianmarco

Kapitel: 3.2 DÉCOMPOSITIONS ADMISSIBLES (D'APRÈS CHEKANOV ET

PUSHKAR)

DOI: https://doi.org/10.5169/seals-66676

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

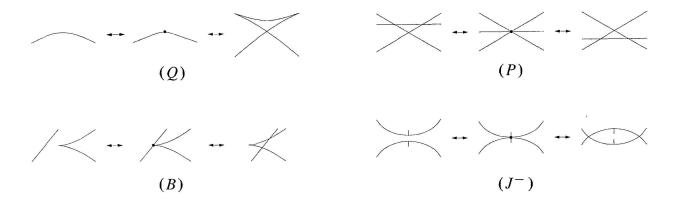


FIGURE 6
Singularités permises dans l'isotopie entre deux fronts

Le nombre de cusps d'un front, comptés avec leur signe (positif pour les cusps montants, négatif pour les cusps descendants), le *nombre de Maslov*, est invariant par isotopies legendriennes.

3.2 DÉCOMPOSITIONS ADMISSIBLES (D'APRÈS CHEKANOV ET PUSHKAR)

Dans cette section on rappelle brièvement la construction d'un nouvel invariant des nœuds legendriens, dû à Yu. Chekanov et P. Pushkar, qui permettra d'établir une caractérisation géométrique de la solution de minimax.

La projection d'un nœud legendrien de $J^1\mathbf{R}$ dans $J^0\mathbf{R}$ par π_1 est un front fermé. Soit Σ un tel front, générique.

On appelle *décomposition* de Σ des courbes X_1, \ldots, X_n fermées, ayant un nombre fini d'auto-intersections, telles que pour $i \neq j$, $X_i \cap X_j$ contient un nombre fini de points, et $X_1 \cup \cdots \cup X_n = \Sigma$.

Un point double $x \in X_i \cap X_j$ de Σ est un *point de saut* si X_i et X_j ne sont pas lisses en x, de Maslov si le nombre de cusps (comptés avec leur signe) qui séparent le long du front les deux branches se coupant en x est 0.

DÉFINITION. Une décomposition (X_1, \ldots, X_n) de Σ est admissible si:

- (1) chaque X_i est homéomorphe au bord d'un disque: $\partial X_i = B_i$;
- (2) pour tout $i \in \{1, ..., n\}, q \in \mathbb{R}$, l'ensemble

$$B_i(q) := \{ z \in \mathbf{R} \mid (q, z) \in B_i \}$$

est connexe; en particulier si c'est un point, ce point est un cusp du front;

- (3) si $(q_0, z) \in X_i \cap X_j$ $(i \neq j)$ est un point de saut alors pour $q \neq q_0$, assez proche q_0 , l'ensemble $B_i(q) \cap B_i(q)$ est soit $B_i(q)$, soit $B_j(q)$, soit vide;
 - (4) les points de sauts sont tous de Maslov.

REMARQUES.

- (1) Il suit des conditions (1) et (2) que chaque courbe X_i a exactement deux cusps, qui divisent la courbe en deux parties, que l'on note σ_i^+ et σ_i^- (avec la convention suivante : pour tout $(q, z_i^{\pm}) \in \sigma_i^{\pm}$ générique, on a $z_i^- < z_i^+$).
- (2) La condition (3) équivaut à demander qu'aucun point de saut ne réalise l'une des *configurations interdites* montrées à la Figure 7.

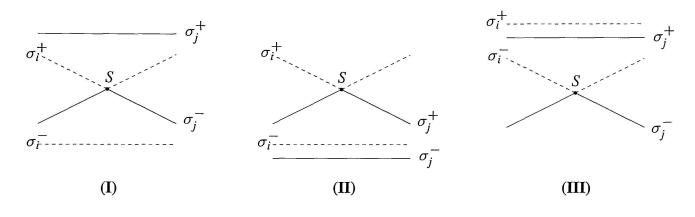


FIGURE 7
Configurations interdites autour des points de saut

Notons par $\#(\mathcal{D})$ le nombre de courbes X_i et par #(S) le nombre de points de saut dans une décomposition admissible \mathcal{D} du front Σ .

Théorème de Chekanov-Pushkar ([Ch2], [C-P]). Le nombre de décompositions admissibles d'un front projection d'un nœud legendrien est invariant par isotopies legendriennes du nœud; de plus, le nombre $\#(\mathcal{D})-\#(\mathbb{S})$ est constant le long de l'isotopie.

EXEMPLE 3.1. La Figure 8 montre deux décompositions d'un front générique, projection d'un nœud legendrien. Le front est isotope au front lèvre (le front ayant deux cusps et aucune auto-intersection), donc; d'après le théorème de Chekanov-Pushkar, la décomposition (1) est la seule admissible.

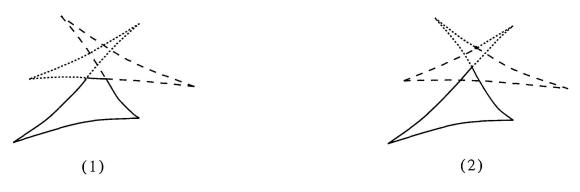


FIGURE 8