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5 if i =0 mod 4,
(i,))—~ < —3 if i=2mod4, and
1 if i is odd.
Then each tile covers a total of either 0 or 16, depending on its placement. In
particular, it always covers a multiple of 16. However, a (2m+1) x (16n+8)

rectangle covers a total that is congruent to 8 modulo 16, and so does a
(4m + 2) x (8n + 4) rectangle. [

REMARK 2.13. Proposition 2.12 uses a single numbering to show that
both types of rectangles cannot be tiled. In general, one may need several
different numberings to show that several regions cannot be tiled.
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REMARK 2.14. It is not hard to show that we can translate a square by
4 units, and then it is straightforward to calculate that H(T) = Z°> x (Z/4Z).

3. BOUNDARY WORDS

| In this section, we describe the boundary word method of Conway and
Lagarias. This is a non-abelian analogue of tile homology, although that may
~ not be immediately clear from the construction !
We must make an important assumption here. Our prototiles must be simply
. connected. We also assume that they have connected interior, although this
condition can be relaxed in some cases. Such a tile has a boundary word,
obtained by starting at a lattice point on the boundary, and traversing the
boundary. For definiteness, we will always traverse in the counterclockwise
direction. A unit step in the positive x [respectively, y] direction is transcribed

as an x [respectively, y]. A step in the negative x [respectively, y] direction
is transcribed as x~! [respectively, y~!].

EXAMPLE 3.1. Consider the following hexomino with the indicated base
point.

xyxyxﬂyx%yﬁx

| FIGURE 3.2

Example of boundary word
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Its boundary word is xyxyx—2yx~'y=3x. We note that the boundary word
depends upon

(1) the choice of base point, and
(2) the particular orientation of the tile.

With regard to (1), a different base point gives rise to a conjugate boundary
word. Condition (2) forces us to use translation-only tiles; therefore if we
want to allow rotations and/or reflections, we must explicitly include each
valid orientation in our protoset. This is actually advantageous, because we
may use this to restrict the orientations that occur, for example, to forbid
reflections of a tile. We will do this in one example below.

The significance of boundary words is the relationship between the
boundary word of a region and the boundary words of the tiles that occur in
a tiling. This is given by the following (note that our statement is slightly
stronger than that given by Conway and Lagarias).

THEOREM 3.3 (Conway-Lagarias). Suppose that the simply connected
region R is tiled by T,,T>,...,T,, one copy of each. Then a boundary
word of R can be written as

~

WR = W1Wy "+ * Wy

where w; is conjugate to a boundary word of T;, this being an identity in
the free group on the generators x and y.

Proof. 'We argue by induction on n. The case n =1 is trivial. So suppose
that n > 1, and that the theorem holds for all simply connected regions tiled
by fewer than n tiles. Fix a tiling of R by 7i,7,,...,T,, and consider one
of the tiles, T, that meets the boundary of R. Suppose it meets the boundary
along k > 1 segments, some of which may be isolated points. Removing T
from the region results in a new region with k& components, Ri,R;, ..., Ry,
some of which may touch at a corner. We label the boundary word of each R;
as v;~ lu,- , where u; is the word along the part of the boundary shared with R,
and v; is along the part shared with the boundary of the tile T'. Let ty, %, ...,
be the words along the segments where 7' meets the boundary of R. Then
we may take for a boundary word of R the element wg = tijuithuy - - - trug.
A boundary word for T is then wr = tjvithvy - - - trvr. (In Figure 3.4, 1, is
the empty word.)




TILE HOMOTOPY GROUPS 133

Uy
R
I 2 (t,)
Vo
V3
Uy R
o
1 1 U
R, T
L
FIGURE 3.4
Decomposition of tiling
Thus we have
(35) WR = wTﬁ)/Rlﬁ]/& e '{DRk

where each wWg, = (fi41Vit1tit2Vita  * vr) ™ (07 g Y(Eip1 Vip1 g2 Vi -+ - BUK)
is a conjugate of the boundary word of R;. The induction hypothesis applies
to each R;, and each tile occurs precisely once in 7 and the tilings of the
R;’s. Thus (3.5) implies that

WR = Wo(hWo(2) " * Wo(n)
where o is a permutation of {1,2,...,n}, and w; is conjugate to a boundary
word of T;. It is easy to show that this implies that wg = wjw, - - - w,, where
each w; is conjugate to w;. This completes the induction and the proof.  []

An immediate consequence is the following.

COROLLARY 3.6. Suppose that x and y are elements of a group G, such
that the boundary word of every tile in T is the identity element of G. If
a (simply connected) region can be tiled by T, then its boundary word also
gives the identity element of G.  []

REMARK 3.7. The converse of Corollary 3.6 is false in general, even if
G i1s taken to be the “largest” group in which the boundary words of all tiles

in 7 are trivial. This is due to the non-abelian analogue of signed tilings (see
Corollary 6.6 below).
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ExampLE 3.8. T ={[__1 ], }, allowing all orientations. Torsten

Sillke asked if these two polyominoes could tile any rectangle whose area

is not a multiple of 3. The next result shows that the answer to his query
is “no”.

THEOREM 3.9. If T = {[__], } tiles a rectangle, then one side

is divisible by 3.

Proof. First note that it suffices to prove that 7 cannot tile any rectangle
both of whose dimensions are congruent to 1 modulo 3. For if 7 tiles a
(3m +2) x (3n + 1) rectangle, then two of these tilings may be juxtaposed
to give a tiling of a (6m + 4) x (3n + 1) rectangle. Similarly, if 7 tiles a
(Bm+2) x (3n+2) rectangle, then it also tiles a (6m+4) x (6n+4) rectangle.
Thus we need only show that 7 cannot tile any (3m+ 1) x (3n+ 1) rectangle.
Let x be the 3-cycle (1,2,3) € S5, and let y be the 3-cycle (3,4,5). Then we
easily check that x*yx 3y~ = xp3x~ 1y ™3 = xyxyx~Iyx~ Iy~ x= Iy~ Iy~ 1 =1,
so the boundary words of all tiles are trivial. However, the boundary word of
a 3m+ 1) x Bn+ 1) rectangle is x> tly3ntly=0mtDy=Gnth — (2 3 5) so
it cannot be tiled. [

REMARK 3.10. A 1 x 1 square has a signed tiling by 7, so the tile
homology technique cannot prove this result.

.............

FIGURE 3.11
Signed tiling of a 1 X 1 square

REMARK 3.12. One might suspect that every rectangular tiling by 7 uses
only the straight tromino. If this were the case, then the theorem would be
somewhat less interesting, and a proof could be given by a checkerboard type
argument. However, a 10 x 15 rectangle has a tiling by 7 which actually
uses the X pentomino.
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FIGURE 3.13
10 x 15 rectangle

QUESTION 3.14. Is there a rectangular tiling by T that uses exactly three
X pentominoes ?

Theorem 3.9 shows that the number of X’s in a rectangular tiling must
be a multiple of 3. The tiling of Figure 3.13 has 6 X’s and the following
tiling has 9.

FIGURE 3.15

10 x 21 rectangle with nine X pentominoes

From the tilings in Figures 3.13 and 3.15, it is easy to construct rectangular I
tilings with 3n X’s, for any n > 2.
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