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40 P. ETINGOF AND E. STRICKLAND

We show how one can prove this Theorem in 3.10. This proof follows
[BEG] (the original proof of [EG2] is shorter but somewhat less conceptual).
The main idea of the proof is to show that the C[f)]w -module Qm can
be extended to a module over a bigger (noncommutative) algebra, namely
the spherical subalgebra of the rational Cherednik algebra. Furthermore, this

module belongs to an appropriate category of representations of this algebra,
called category O. On the other hand, it can be shown that any module over
the spherical subalgebra that belongs to this category is free when restricted
to the commutative algebra C[l)]w.

1.5 The Poincaré series of Qm

Consider now the Poincaré series

hQ,„(t) =a Y dim Qm[r]t'
r>0

where Qm[r] denotes the graded component of Qm of degree r. For every
irreducible representation r eW, define

Xr(t)Y dim Horniv(r, C[ï)][r])f
r>0

Consider the element in the group ring Z[W]

Mm

The W-invariance of m implies that iim lies in the center of Z[W]. Hence

it is clear that fim acts as a scalar, £m(r), on r. Let dT be the degree of r.

Lemma 1.9. The scalar £m(r) is an integer.

Proof. Z[W] and hence also its center, is a finite Z-module. This clearly
implies that £m(r) is an algebraic integer. Thus to prove that £m(r) is an

integer, it suffices to see that £m(r) is a rational number. Let dT^s be the

dimension of the space of s-invariants in r. Taking traces we get

^T^mC7") — ^ 2nis{dT dT)S),

which gives the rationality of £m(r).
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Theorem 1.10. One has

(1) hQm(t) dTMT)xT{t).

rew

Remark. This theorem was proved in [FeV] modulo Theorem 1.7

(conjectured in [FV]) using the so-called Matsuo-Cherednik correspondence
(see [FeV] for details). Thus, Theorem 1.10 follows from [FeV] and [EG2].
Another proof of this theorem is given in [BEG] ; this is the proof we will
discuss below (in Lecture 3).

Example 1.11. If m — 0, since Qo C[fj], the theorem says that

hQM —
^ ^Vr(0 •

rew

Indeed, as a IT-module one has

Cm ©rT 0 Hornw(r, C[l}]).

Example 1.12. If IT Z/2, then IT — {+,—}, where + (respectively

-) denotes the trivial (respectively the sign) representation. One has

C[x] C[x2] ® C

where C[x2] C[x]wandC[x2]x is the isotypic component of the sign
representation. Thus

X+(0 ~ I — t2 ' X-(0 ~
Y — t2 '

hm — m(l — s). Thus £m(+) 0, £,„(—) 2m. We deduce that

1 ^2m+1

as we already know.

Recall now that as a graded IT-module C[fj] is isomorphic to C[f)]w(g)Z/,
H being the space of harmonic polynomials. We deduce that the t -isotypic
component in C[f)] is isomorphic to C[fj]w0tfr.
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Set Kr(t) — ^r>0 dim Horner, #[r])f. This is a polynomial, called the

Kostka polynomial relative to r. We deduce that

m tA KAt)
(2) Xr(t)

Also, if r' — t 0 e, e being the sign representation, one has

Kr,(t) Kr(r1)/|z|

Set now

Pm(t) Y,
t£W

We have

Proposition 1.13 ([FeV]).

Pm{t)
hQm(t) riLid^)'

Furthermore Pm(t) t^n^+^Pm{t~l).

Proof. Substituting the expression (2) for Xrif) in (1.10) and using the

definition of Pm(0, we get

«a.w - Y tn-=id-do'tGW

as desired.

Now notice that

CraC7") T ^m(r — ^ ^ 2t7Î| •

Using this we get

rGW

Y dT,MT,)Kr,(t)=pm{t),

r'ew

as desired.
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From this we deduce

Theorem 1.14 ([EG2, BEG, FeV], conjectured in [FV]). The ring Qm

of m-quasi-invariants is Gorenstein.

Proof By Stanley's theorem (see [Eis]), a positively graded Cohen-

Macaulay domain A is Gorenstein iff its Poincaré series is a rational function

hit) satisfying the equation h(t~x) (—l)ntlh(t), where / is an integer and n

is the dimension of the spectrum of A. Thus the result follows immediately
from Proposition 1.13.

1.6 The ring of differential operators on Xm

Finally, let us introduce the ring V(Xm) of differential operators on Xm,
that is the ring of differential operators with coefficients in C(fj) mapping Qm

to Qm. It is clear that this definition coincides with Grothendieck's well-known
definition ([Bj]).

I Theorem 1.15 ([BEG]). V(Xm) is a simple algebra.

I

j Remark 1.16. a) The ring of differential operators on a smooth affine
I algebraic variety is always simple (see [Bj], Chapter 3).

j b) By a result of M. van den Bergh [VdB], for a non-smooth variety, the

| simplicity of the ring of differential operators implies the Cohen-Macaulay
j property of this variety.

i
j 2. Lecture 2

\

j We will now see how the ring Qm appears in the theory of completely
j integrable systems.
j
I
I 2.1 Hamiltonian mechanics and integrable systems
I
I Recall the basic setup of Hamiltonian mechanics [Ar], Consider a mechan-
I ical system with configuration space (a smooth manifold). Then the phase

space of this system is T*X,the cotangent bundle on X. The space T*X
is naturally a symplectic manifold, and in particular we have an operation
of Poisson bracket on functions on A point of T'X is a pair
where x G X is the position and p £ T*X is the momentum. Such pairs are

i
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