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148 M. REID
6. CRITERIA FOR 7(7) TO BE ABELIAN

In many cases that we have examined, the tile homotopy group turns out to
be abelian. In such cases, the tile homotopy group gives no further information
than the tile homology group, which is generally more accessible. We give
here two general criteria which imply that 7(7") is abelian.

THEOREM 6.1. Suppose that the set of prototiles T is rotationally
invariant.

(@) If x commutes with xyx~ '3~ in P(T), then ©(T) is cyclic, and
its order is the greatest common divisor of the sizes of tiles in T . If d is
this greatest common divisor, then a specific isomorphism W(T)—%—)Z/dZ is
given by [v] — N mod d, where the loop ~y encloses N squares, counting
multiplicity.

(b) If Xy commutes with xyx~ 51 in P(T), then w(T) is abelian. Let
H C Z? be the subgroup generated by all elements of the form (b,r) and
(r,b), where there is a tile in T with b black squares and r red squares. Then
m(T) = Z?/H, and a specific isomorphism is given by [v] — (B,R) mod H,
where the loop  encloses B black squares and R red squares, counting
multiplicity.

Proof. (a) A 90° clockwise rotation corresponds to mapping x and y
to y~! and x respectively. Since 7 is invariant under this rotation, this map
induces an automorphism of P(7). Thus ! commutes with y~'xyx~!, and
therefore also with xyx~'y~!'. Now xyx~'$~! is central in P(7). We have
seen that m(7) is generated by the elements ¢; = *¥'3/xyx~'y~'y /%', and
our commutativity relations show that these are all equal to ¢ = xyx 'y~ !.
Thus 7w(7) is generated by a single element, ¢, and therefore is cyclic.

Let w € C be the boundary word of a tile in 7, which imposes a relation
upon P(7). Then w can be written uniquely as a word in the elements c;;.
The total weight in an individual c¢; is the winding number around square
(i,j), which is either 1 or O, according to whether or not that square is in
the tile. Thus the total weight in all the ¢;’s is the size of the tile. Therefore,
w imposes the relation ¢" =1 on 7w (7), where n is the size of the tile. The

remainder of the statement is now clear.

x5!, so does x7 1571, A 90° clockwise

5
¥ commutes with y~!'xyx~!, and conjugating by

rotation shows that y~
y shows that x¥y~' commutes with xyx~'y~!. Now we see that both

¥ =@ HE" 5 H7! and = @5y H7IED ! also commute with
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x¥px~ 1971, Next, w(7T) is generated by the elements ¢;. Our commutativity
relations show that ¢; = oo if i+ j is even, while ¢; = Cio if i+
is odd. Moreover, these two elements commute with each other, because
oo =xyx 'y~!, and ¢ = F)EH G |

Let w € C be the boundary word of a tile in 7, which may be written
uniquely as a word in the elements c¢;. The total weight in those c¢;’s with
i+j even [respectively, odd] is the number of black [respectively, red] squares
in this placement of the tile. Thus w imposes the relation ¢fcj, = 1 on
m(T), and the relation ¢j,cf = 1 comes from the boundary word xwx™'.

The statement now follows. L]

It may be useful to reformulate Theorem 6.1 in a different way. We will
consider the following self-intersecting closed paths to depict “generalized
tiles” that have boundary words xyx 'y~ 'x"lyxy=! and xyx—1y=2
respectively.

x lyx

N
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FIGURE 6.2

Generalized tiles
Now Theorem 6.1 may be rephrased as follows.

THEOREM 6.3.  Suppose that rotations are allowed in our protosets.

(a) The tile homotopy group of T = {ED} is isomorphic to 71, and
a specific isomorphism is given by [y] — N, where the loop ~y encloses N
squares, counting multiplicity.

(b) The tile homotopy group of T = {ﬁ]} is isomorphic to Z?, and a

specific isomorphism is given by [v] — (B,R), where the loop v encloses B
black squares and R red squares, counting multiplicity.  []

Conway and Lagarias mention the protoset 7 = { }, with all

orientations allowed. They remark that Walkup [17] has shown that if an
m X n rectangle can be tiled by 7, then both m and n are multiples of 4.
They also note that a rectangle has a signed tiling by 7 if and only if its
area is a multiple of 8. They implicitly ask what the relationship between
Walkup’s proof and the tile homotopy method is. Theorem 6.1 above allows
us to compute the tile homotopy group of 7T .
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PROPOSITION 6.4. The tile homotopy group of T = {} is Z/8Z.

A specific isomorphism is given by [v] — (B + 5R) mod 8, where the loop -y
encloses B black squares and R red squares, counting multiplicity.

Proof. The boundary words of the orientations

FIGURE 6.5

Two orientations of the T tetromino

""""" ¥ = 1 = y 'xox " 'yx~ 152 in P(T).
o

Therefore, ¥ 2y~ !'x = yx~'y~2, which is equivalent to Xy commut-
ing with xyx~!'y~!. Now part (b) of Theorem 6.1 shows that =w(7) =
7%/((1,3),(3,1)) 2 Z/8Z, and the specific isomorphism is as claimed.  []

1

COROLLARY 6.6. The boundary word of a rectangle is trivial- in

m({ }) if and only if its area is divisible by 8. L]

This shows that Walkup’s proof is unrelated to tile homotopy; his proof
relies on subtle geometric restrictions that are not detected by the tile homotopy
group.

Another example that exhibits a similar phenomenon in a more obvious
manner is the following.

-

EXAMPLE 6.7. Let 7 = { }, with all orientations allowed.

Comparing the two orientations

FIGURE 6.8

Two orientations of a tile
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shows that ¥ commutes with xpx~'y~! in the tile path group. Then Theorem
6.1 (a) shows that 7(7) = Z/9Z. This means that the tile homotopy group
only detects area, modulo 9.

On the other hand, we can easily show that if T tiles a rectangle, then
both sides must be even. Consider the ways that a tile can touch the edge of
a rectangle.

FIGURE 6.9

Tiles along an edge of a rectangle

We see that the first two possibilities cannot occur, so each tile that touches
the edge does so along an even length. Therefore, each edge of the rectangle
has even length. In fact, it is not much harder to show that if 7 tiles an
m X n rectangle, then both m and n are multiples of 6. A straightforward
argument shows that every tiling of a quadrant by 7 is a union of 6 X 6
squares, which implies the result.

7. APPENDIX : FURTHER EXAMPLES

Here we give some more tiling restrictions we have found using the tile
homotopy technique. In each case, there are signed tilings that show that the
result cannot be obtained by tile homology methods, and there are tilings
that show that the result is non-vacuous. Further details will be published
elsewhere.

THEOREM 7.1. Let T = {} where all orientations are allowed.

(@) If T tiles an m x n rectangle, then either m or n is a multiple of 4.
(b) A 1 x 6 rectangle has a signed tiling by T .

THEOREM 7.2. Let T = { : I:JI—|}, where all orientations are

allowed.

(@) If T tiles an m X n rectangle, then mn is a multiple of 4.
(b) A 1 X 6 rectangle has a signed tiling by T .
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