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M. GROMOV

me to write this paper. I also appreciate the hospitality of IHES, which made

possible my involvement in this story. I am especially thankful to Dennis
Sullivan, who took pains to read the paper and to clean it up of multiple
errors.

Structure of the paper. We start with a geometric outlook on topological

entropy and reduce our inequality (0.1) to standard facts about minimal
varieties. We discuss next the real algebraic analogue of (0.1) and a generalization

to maps. We conclude with an estimate of the entropy involving the

mean curvature.

§ 1. Notation and definitions

For a space X we denote by Xk the product X xXx xX (k factors).
A graph F over X is by definition an arbitrary set F C X2. When X is finite
this is the usual definition of an oriented graph (with loops). The graph of a

map X X gives another example.
For a graph F we denote by Fk C Xk the set of strings (x\,... ,Xk),

xi G X, where each pair (x;_i,;q) G X2 is contained in F.
When X is endowed with a metric, we call e-cubes products in Xk of

balls from X of radius e. For a set Y C Xk we denote by Cape Y the minimal
number of e-cubes needed to cover Y.

Entropy

Set he(F) limsup^^ | logCape r*, and h(F) — lim^o WO, for

r c x2.
When / is an endomorphism X -A X, we define its entropy h(f) as the

entropy of its graph Ff. If the space X is compact, the definition does not
depend on the choice of the metric [2]. Observe that the entropy of a general

graph r is equal to the entropy of the shift in C X°° : is the space
of doubly infinite strings Orç)i=...^1,0,1,... with the product topology, and the

shift maps (jq) to (jq+i). For finite X, we come to the usual definition of the

Markov shift.

Volume

From now on, X is a Riemannian manifold and n — dimT, r c x2.
We denote by Vol r* the «-dimensional volume of F/; c Xk, i.e. the
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n -dimensional Hausdorff measure with respect to the Riemann product metric

in Xk. Set
i

lov T lim sup - log Vol Tk
>-oo k

For an / we set lov / lov Tf. This is a smooth invariant of f (it does not

depend on the choice of the Riemann metric).

Our invariant "lov" is sometimes more accessible than entropy and for a

holomorphic / we are going to prove that

(1.0) h(f) < low f.

Density

Denote by Dense(rfc,7), for 7 E Fk C Xk, the rc-dimensional measure

of the intersection of Tk with the ball (in the Riemannian product metric)

of radius e centered at 7. Set Dense(I~T) inf^GrA. Dense(r^, 7), and then

lodner liminf^oo £ logDense r\, and finally

lodn T lim lodne T.
e—>-0

Observe that Vol > Cap2e Dense and hence that

(1.1) h(V) < lov T — lodnT.

§2. Estimates of density

Consider a Riemannian manifold W (it will be Xk in the sequel) and an

n -dimensional subvariety V C W. We suppose that the boundary of V (if
there is such) does not intersect the ball Be C W of radius e > 0 centered

at a point vq £ V. We suppose also that the injectivity radius of W at vq

is at least e, i.e. the exponential map TVo(W) -> W is injective in the e-ball
in TVo(W).

Density of a minimal variety

If the sectional curvature in Be is not greater than K and V is minimal,
then

(2.0) Vol(VnRe) > C>0,
where the constant C depends on n, K, and e, but does not depend on dim W.
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