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218 M. GROMOV

me to write this paper. I also appreciate the hospitality of IHES, which made
possible my involvement in this story. I-am especially thankful to Dennis
Sullivan, who took pains to read the paper and to clean it up of multiple
EeITors.

STRUCTURE OF THE PAPER. We start with a geometric outlook on topolog-
ical entropy and reduce our inequality (0.1) to standard facts about minimal
varieties. We discuss next the real algebraic analogue of (0.1) and a general-
ization to maps. We conclude with an estimate of the entropy involving the
mean curvature.

§1. NOTATION AND DEFINITIONS

For a space X we denote by X* the product X x X x ... x X (k factors).
A graph T over X is by definition an arbitrary set I' C X*. When X is finite
this is the usual definition of an oriented graph (with loops). The graph of a
map X — X gives another example.

For a graph I' we denote by I, C X* the set of Strings (Xi, ..., X, ..., Xk),
x; € X, where each pair (x;,_;,x;) € X* is contained in T.

When X is endowed with a metric, we call e-cubes products in X* of
balls from X of radius ¢. For a set ¥ C X* we denote by Cap, Y the minimal
number of e-cubes needed to cover Y.

, ENTROPY

- Set h(I') = limsup,_, -}glog Cap_ Iy, and A(I) = lime0h.(I), for
I CX>.

When f is an endomorphism X — X, we define its entropy h(f) as the
entropy of its graph I;. If the space X is compact, the definition does not
depend on the choice of the metric [2]. Observe that the entropy of a general
graph I' is equal to the entropy of the shift in I'ox C X*°: I', is the space
of doubly infinite strings (x;)i=... —1,0,1,... With the product topology, and the
shift maps (x;) to (x;41). For finite X, we come to the usual definition of the
Markov shift.

VOLUME

From now on, X is a Riemannian manifold and n = dimT, T Cc X2.
We denote by Vol I'y the n-dimensional volume of I} C Xk ie. the
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n-dimensional Hausdorff measure with respect to the Riemann product metric
in X*. Set |
lov I" = lim sup z log Vol 17 .

k—o0
For an f we set lov f = lov I'y. This is a smooth invariant of f (it does not
depend on the choice of the Riemann metric).
Our invariant “lov” is sometimes more accessible than entropy and for a
holomorphic f we are going to prove that

(1.0) h(f) < lov f .

DENSITY

Denote by Dens.(I'x,v), for v € It C X*, the n-dimensional measure
of the intersection of I'; with the ball (in the Riemannian product metric)
of radius e centered at ~y. Set Dens.(I'y) = infyer, Dens(I'x,7y), and then
lodn, I"' = liminf;_, %log Dens, I'y, and finally

lodnI" = lim lodn. I".

e—0

Observe that Vol > Cap,, Dens, and hence that

(1.1) (V) <lovI —lodnI.

§2. ESTIMATES OF DENSITY

Consider a Riemannian manifold W (it will be X* in the sequel) and an
n-dimensional subvariety V C W. We suppose that the boundary of V (if
there is such) does not intersect the ball B, C W of radius € > 0 centered
at a point vy € V. We suppose also that the injectivity radius of W at v
is at least €, 1.e. the exponential map T,,(W) — W is injective in the e-ball
in T,,(W).

DENSITY OF A MINIMAL VARIETY

If the sectional curvature in B¢ is not greater than K and V is minimal,
then

(2.0) Vol (VNB.,) >C>0,

where the constant C depends on n, K, and €, but does not depend on dim W.
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