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Proof. It is easy to see that the map /i is surjective. Thus, we only have

to show that it is injective. In other words, we need to show that monomials

xl{ .xl^y\{ .yfw are linearly independent in Hc. To do this, it suffices to
show that the images of these monomials under the homomorphism i.e.

-xl^D{\ D{nn w, are linearly independent.
Given an element A G A, writing A Ylwew^^w ?w ^ we

define the order of A, ordA, as the maximum of the orders of the Pw's.
Notice that ordAB <ordA+ordZL We now remark that for any sequence of
non negative indices in),

Indeed this is true for Dx.. We proceed by induction on r j= i\ Hf h in- We

can clearly assume i\ >0, so by induction,

A, • • • À (ft, + Lo.t.x^-1 +

From this we deduce that for any pair of multiindices I
J — Vu--., jn), w e W,setting xDj -
dj dl\ • • • ft", we have

Using this and the linear independence of the elements x;djw, it is immediate
to conclude that the elements xjDjw are linearly independent, proving our
claim.

Remark 1. We see that the homomorphism <j> identifies H, with the
subalgebra of A generated by C[f)], the Dunkl operators Dy, ye f) and W.

Remark 2. Another way to state the PBW theorem is the following. Let
F' be a filtration on H, defined by degüy) deg(y,) 1, deg(rn) 0. Then
we have a natural surjective mapping from C[tj x lj*] x to the associated
graded algebra gr (Hc).ThePBW theorem claims that this map is in fact an
isomorphism.

3.5 The spherical subalgebra

Let us now introduce the idempotent

A •••/ft ft •••ft, :

xiDjw xidjw + I.o.t.
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Definition 3.13. The spherical subalgebra of Hc is the algebra eHce.

Notice that 1 £ eHce. On the other hand, since ex xe e for
x G eHce, e is the unit for the spherical subalgebra. We can embed both
C[f)*]w and C[l)]w in the spherical subalgebra as follows. Take / G

(the other case is identical) and set me(f) — fe. Since / is invariant, we
have efe fe2 fe me(f), so that me actually maps C[f)*]w to eHce.
The injectivity is clear from the PBW-theorem. As for the fact that me is a

homomorphism, we have me(fg) fge — fge2 — fege me(f)me(g). From

now on, we will consider both C[f)*]w and C[f)]w as subalgebras of the

spherical subalgebra.

3.6 Category O

We are now going to study representations of the algebras Hc and eHce.

Definition 3.14. The category Ö(HC) (resp. G(eHce)) is the full
subcategory of the category of Hc -modules (resp. eHce -modules) whose

objects are the modules M such that

1) M is finitely generated.

2) For all v G M, the subspace C[\)*]wv c M is finite dimensional.

We can define a functor

F: 0(HC) -A 0(eHce)

by setting F(M) eM. It is easy to show that F(M) is an object of G(eHce).
We are now going to explain how to construct some modules in 0(HC)

which, by analogy with the case of enveloping algebras of semisimple Lie
algebras, we will call Whittaker and Verma modules. First, take À G f}*.
Denote by W\ C W the stabilizer of À. Take an irreducible W\ -module r.
We define a structure of C[tj*] x C[Wa] -module on r by

(fw)v =f(X)(wv) \/v G t f w G W\ / G C[f)*].

It is easy to see that this action is well defined and we denote this module

by A#r. We can then consider the Hc -module

Hc <g>c[t)*]xC[Wx] ^T •

This is called a Whittaker module. In the special case À 0 (and
hence W\ W), the module M(0, r) is called a Verma module. It is

clear that these are objects of Ö. Notice that as C[(j] x C[W] -module,

M(A, r) Cffi] 0c C[W] 0c[wx] r.
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