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Proof. 1t is easy to see that the map p is surjective. Thus, we only have
to show that it is injective. In other words, we need to show that monomials
x’f ...xf;y{‘ . yiw are linearly independent in H,.. To do this, it suffices to
show that the images of these monomials under the homomorphism ¢, i.e.
xif x;D!C} ...D){,’;w, are linearly independent.

Given an element A € A, writing A=) . P,w with P, € D(U) we
define the order of A, ordA, as the maximum of the orders of the P, ’s.
Notice that ordAB <ordA+ordB. We now remark that for any sequence of
non negative indices (iy,...,i,),

Dl ---Dir =i ... 9 4 Lout.

Indeed this is true for D,,. We proceed by induction on r =i +---+1i,. We
can clearly assume i; > 0, so by induction,

Dy Dy = 0y 4 Lot )02+ 0 + Lot) = 1 -+ O + Lo.t.

From this we deduce that for any pair of multiindices I = (iy,...,i,),
J = (i,.- ), w € W, setting x; = x;""---x,", D; = Di ---Dj",
0y =04l --- 0}, we have

xiDyw = x;0;w + lo.t.

Using this and the linear independence of the elements x;0;w, it is immediate

to conclude that the elements x;D;w are linearly independent, proving our
claim. [

REMARK 1. We see that the homomorphism ¢ identifies H. with the
subalgebra of A generated by C[h], the Dunkl operators D,, yeh and W.

REMARK 2. Another way to state the PBW theorem is the following. Let
F* be a filtration on H, defined by deg(x;) = deg(y;) = 1, deg(w) = 0. Then
we have a natural surjective mapping from C[h x h*] x W to the associated

graded algebra gr(H.). The PBW theorem claims that this map 1is in fact an
isomorphism.

3.5 THE SPHERICAL SUBALGEBRA

Let us now introduce the idempotent

1
e:—“—/ZwGC[W].
wew
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DEFINITION 3.13. The spherical subalgebra of H. is the algebra eH_ e.

Notice that 1 ¢ eH.e. On the other hand, since ex = xe = e for
x € eH.e, e 1is the unit for the spherical subalgebra. We can embed both
C[h*1"¥ and C[h]" in the spherical subalgebra as follows. Take f € C[h*]"
(the other case is identical) and set m.(f) = fe. Since f is invariant, we
have efe = fe* = fe = m,(f), so that m, actually maps C[h*]" to eH_e.
The injectivity is clear from the PBW-theorem. As for the fact that m, is a
homomorphism, we have m.(fg) = fge = fge*> = fege = m,(f)m.(g). From
now on, we will consider both C[h*]" and C[h]" as subalgebras of the
spherical subalgebra.

3.6 CATEGORY O

We are now going to study representations of the algebras H, and eH_ e.

DEFINITION 3.14. The category O(H.) (resp. O(eH.e)) is the full
subcategory of the category of H,.-modules (resp. eH.e-modules) whose
objects are the modules M such that

1) M 1s finitely generated.

2) For all v € M, the subspace C[h*]"v C M is finite dimensional.

We can define a functor
F: OH,) — O(eH_.e)

by setting F(M) = eM. It is easy to show that F(M) is an object of O(eH._e).

We are now going to explain how to construct some modules in O(H,)
which, by analogy with the case of enveloping algebras of semisimple Lie
algebras, we will call Whittaker and Verma modules. First, take A € h*.
Denote by Wy C W the stabilizer of A. Take an irreducible W) -module 7.
We define a structure of C[h*] x C[W)]-module on 7 by

(fw)v = fN)(wv) Yv eT, we Wy, feClh*].

It is easy to see that this action is well defined and we denote this module
by AM#r. We can then consider the H.-module

M\, 7) = He ®cry*1sCiwa] AFT

This is called a Whittaker module. In the special case A = 0 (and
hence W) = W), the module M(0,7) 1s called a Verma module. It is

- clear that these are objects of (0. Notice that as C[h] x C[W]-module,

M\, ) = C[hH] ®c CIW] @ctwy) T-
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