All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Volume 49 (2003)
Heading Page
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter
PDF
Table of Contents
PDF
1
Front matter
PDF
2
Article: CARACTÉRISATION GÉOMÉTRIQUE DES SOLUTIONS DE MINIMAX POUR L'ÉQUATION DE HAMILTON-JACOBI
PDF
3
Abstract
PDF
3
Chapter: Introduction
PDF
3
Chapter: 1. MINIMAX D'UNE FONCTION QUADRATIQUE À L'INFINI
PDF
5
Chapter: 1.1 Préliminaires
PDF
5
Chapter: 1.2 Points critiques incidents, liés et libres
PDF
8
Chapter: 1.3 Le niveau critique de minimax
PDF
10
Chapter: 2. La solution de minimax
PDF
13
Chapter: 2.1 Rappels de géométrie symplectique
PDF
13
Chapter: 2.2 La solution géométrique de (PC)
PDF
17
Chapter: 2.3 La solution de minimax
PDF
20
Chapter: 3. Caractérisation géométrique de la solution de minimax
PDF
22
Chapter: 3.1 Notations
PDF
22
Chapter: 3.2 DÉCOMPOSITIONS ADMISSIBLES (D'APRÈS CHEKANOV ET PUSHKAR)
PDF
23
Chapter: 3.3 Caractérisation géométrique du minimax
PDF
25
Chapter: 3.4 Triangles évanescents
PDF
29
Bibliography
PDF
33
Article: LECTURES ON QUASI-INVARIANTS OF COXETER GROUPS AND THE CHEREDNIK ALGEBRA
PDF
35
Chapter: Introduction
PDF
35
Chapter: 1. Lecture 1
PDF
36
Chapter: 1.1 Définition of quasi-invariants
PDF
36
Chapter: 1.2 Elementary properties of $Q_m$
PDF
37
Chapter: 1.3 The variety $X_m$ and its bijective normalization
PDF
38
Chapter: 1.4 FURTHER PROPERTIES OF $X_m$
PDF
39
Chapter: 1.5 The Poincaré séries of $Q_m$
PDF
40
Chapter: 1.6 The ring of differential operators on $X_m$
PDF
43
Chapter: 2. Lecture 2
PDF
43
Chapter: 2.1 Hamiltonian mechanics and integrable Systems
PDF
43
Chapter: 2.2 The classical Calogero-Moser System
PDF
44
Chapter: 2.3 The quantum Calogero-Moser System
PDF
45
Chapter: 2.4 The algebra of differential-reflection operators
PDF
46
Chapter: 2.5 Dunkl operators and symmetric quantum integrals
PDF
48
Chapter: 2.6 Additional integrals for integer valued c
PDF
50
Chapter: 2.7 An example
PDF
52
Chapter: 3. Lecture 3
PDF
53
Chapter: 3.1 Shift operator and construction of the Baker-Akhiezer function
PDF
53
Chapter: 3.2 Berest's formula for $L_q$
PDF
54
Chapter: 3.3 Differential operators on $X_m$
PDF
57
Chapter: 3.4 The Cherednik algebra
PDF
58
Chapter: 3.5 The spherical subalgebra
PDF
59
Chapter: 3.6 Category O
PDF
60
Chapter: 3.7 Generic c
PDF
61
Chapter: 3.8 The Levasseur-Stafford theorem and its generalization
PDF
62
Chapter: 3.9 The action of the Cherednik algebra to quasi-invariants
PDF
62
Chapter: 3.10 Proof of Theorem 1.8
PDF
63
Chapter: 3.11 Proof of Theorem 1.15
PDF
63
Bibliography
PDF
64
Article: SOME REMARKS ON NONCONNECTED COMPACT LIE GROUPS
PDF
67
Abstract
PDF
67
Chapter: 1. Introduction
PDF
67
Chapter: 2. Compact Lie groups :a review
PDF
70
Chapter: 3. Compact Lie groups and extensions
PDF
72
Chapter: 4. Proof of the Main Theorem and examples
PDF
75
Chapter: 5. Splitting of the extension ASSOCIATED TO A NONCONNECTED COMPACT LIE GROUP
PDF
80
Bibliography
PDF
83
Article: ATIYAH'S $L^2$-INDEX THEOREM
PDF
85
Chapter: 1. Introduction
PDF
85
Chapter: 2. REVIEW OF THE $L^2$ -INDEX THEOREM
PDF
85
Chapter: 3. Hilbert modules
PDF
88
Chapter: 4. On K-homology
PDF
89
Chapter: 5. Algebraic proof of Atiyah's $L2$-index theorem
PDF
91
Bibliography
PDF
92
Article: UNE PREUVE DU THÉORÈME DE LIOUVILLE EN GÉOMÉTRIE CONFORME DANS LE CAS ANALYTIQUE
PDF
95
Chapter: 1. Introduction
PDF
95
Chapter: 2. Invariance conforme des géodésiques isotropes
PDF
96
Chapter: 3. Une application: le théorème de Liouville dans le cas analytique
PDF
98
Bibliography
PDF
100
Article: IDEAL SOLUTIONS OF THE TARRY-ESCOTT PROBLEM OF DEGREES FOUR AND FIVE AND RELATED DIOPHANTINE SYSTEMS
PDF
101
Abstract
PDF
101
Chapter: 1. Introduction
PDF
101
Chapter: 2. Ideal non-symmetric solutions of the Tarry-Escott problem of degree four
PDF
102
Chapter: 3. Ideal non-symmetric solutions of the Tarry-Escott problem of degree five
PDF
105
Bibliography
PDF
108
Article: ADDITIVE NUMBER THEORY SHEDS EXTRA LIGHT ON THE HOPF-STIEFEL o FUNCTION
PDF
109
Abstract
PDF
109
Chapter: 1. Introduction
PDF
109
Chapter: 2. Proof of Theorem 4
PDF
112
Chapter: 2.1 The lower bound
PDF
112
Chapter: 2.2 The upper bound
PDF
113
Chapter: 3. From Theorem 3 to Theorem 1
PDF
114
Bibliography
PDF
115
Article: NOTE ON THE HOPF-STIEFEL FUNCTION
PDF
117
Chapter: Introduction
PDF
117
Chapter: 1. Deriving Theorem 1 from Theorem 2
PDF
118
Chapter: 2. Proof of Theorem 2
PDF
120
Bibliography
PDF
122
Article: TILE HOMOTOPY GROUPS
PDF
123
Abstract
PDF
123
Chapter: 1. Introduction
PDF
123
Chapter: 2. Tiling and integer programming
PDF
126
Chapter: 3. Boundary words
PDF
131
Chapter: 4. Tile homotopy groups
PDF
136
Chapter: 5. Strategy for working with tile path groups
PDF
140
Chapter: 6. Criteria for $\pi(\Tau)$ to be abelian
PDF
148
Appendix: 7. Appendix: further examples
PDF
151
Bibliography
PDF
154
Article: SYMPLECTIC LOOK AT SURFACES OF REVOLUTION
PDF
157
Chapter: 1. Introduction
PDF
157
Chapter: 2. Abstract surfaces of revolution
PDF
158
Chapter: 3. Metrics of specified curvature
PDF
166
Bibliography
PDF
172
Article: QUADRICS, ORTHOGONAL ACTIONS AND INVOLUTIONS IN COMPLEX PROJECTIVE SPACES
PDF
173
Chapter: 0. Introduction
PDF
173
Chapter: 1. ON THE TOPOLOGY OF A QUADRIC IN $P_C^n$
PDF
177
Chapter: 2. ON THE GEOMETRY OF $P_C^n$
PDF
181
Chapter: 3. $P_C^2$ AND THE 4-SPHERE $S^4$
PDF
188
Chapter: 4. SOME APPLICATIONS AND REMARKS
PDF
195
Bibliography
PDF
201
Rubric: COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
PDF
205
Chapter: DISCUSSION DOCUMENT FOR THE FOURTEENTH ICMI STUDY APPLICATIONS AND MODELLING IN MATHEMATICS EDUCATION
PDF
205
Chapter: 1. Rationale for the Study
PDF
205
Chapter: 2. Framework for the Study
PDF
207
Chapter: 2.1 Concepts and notions
PDF
207
Chapter: 2.2 Structure of the topic applications and modelling in mathematics education
PDF
208
Chapter: 3. Examples of important issues
PDF
209
Chapter: 3.1 Epistemology
PDF
209
Chapter: 3.2 Application problems
PDF
210
Chapter: 3.3 Modelling abilities and competencies
PDF
210
Chapter: 3.4 Beliefs, attitudes, and emotions
PDF
210
Chapter: 3.5 Curriculum and goals
PDF
211
Chapter: 3.6 Modelling pedagogy
PDF
212
Chapter: 3.7 SUSTAINED IMPLEMENTATION
PDF
212
Chapter: 3.8 Assessment and evaluation
PDF
213
Chapter: 3.9 Technological impacts
PDF
213
Chapter: 4. Call for contributions to the Study
PDF
214
Rubric: BULLETIN BIBLIOGRAPHIQUE
PDF
1
Chapter: Généralités
PDF
1
Chapter: Histoire
PDF
5
Chapter: Logique et fondements
PDF
6
Chapter: Théorie des ensembles
PDF
7
Chapter: Analyse combinatoire
PDF
7
Chapter: Ordre, treillis
PDF
8
Chapter: Théorie des nombres
PDF
8
Chapter: Corps et polynômes
PDF
11
Chapter: Géométrie algébrique
PDF
12
Chapter: Anneaux et algèbres
PDF
12
Chapter: Théorie des groupes et généralisations
PDF
13
Chapter: Mesure et intégration
PDF
14
Chapter: Fonctions d'une variable complexe
PDF
14
Chapter: Equations différentielles ordinaires
PDF
15
Chapter: Systèmes dynamiques et théorie ergodique
PDF
15
Chapter: Analyse de Fourier, analyse harmonique abstraite
PDF
16
Chapter: Analyse fonctionnelle
PDF
16
Chapter: Théorie des opérateurs
PDF
18
Chapter: Calcul des variations
PDF
18
Chapter: Géométrie
PDF
19
Chapter: Topologie générale
PDF
20
Chapter: Topologie algébrique
PDF
21
Chapter: Topologie des variétés, analyse globale et analyse des variétés
PDF
21
Chapter: Probabilités et processus stochastiques
PDF
23
Chapter: Statistique
PDF
24
Chapter: Analyse numérique
PDF
25
Chapter: Informatique
PDF
25
Chapter: Mécanique des solides, élasticité et plasticité
PDF
26
Chapter: Optique, électromagnétique
PDF
26
Chapter: Economie, recherche opérationnelle, jeux
PDF
26
Chapter: Systèmes, contrôle optimal
PDF
27
Back matter
PDF
28
Back matter
PDF
Back matter
PDF
Back matter
PDF
Back matter
PDF
Issue 3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter
PDF
Table of Contents
PDF
215
Front matter
PDF
216
Article: ON THE ENTROPY OF HOLOMORPHIC MAPS
PDF
217
Chapter: §1. Notation and definitions
PDF
218
Chapter: §2. ESTIMATES OF DENSITY
PDF
219
Chapter: §3. KÄHLER MANIFOLDS
PDF
221
Chapter: §4. Real algebraic maps
PDF
224
Chapter: §5. Quasiconformal maps
PDF
227
Chapter: §6. Mean curvature
PDF
229
Appendix: Appendix : Examples of holomorphic endomorphisms
PDF
230
Bibliography
PDF
231
Chapter: Note des Éditeurs
PDF
232
Article: NOTES SUR L'ARTICLE DE M. GROMOV
PDF
232
Bibliography
PDF
234
Article: ENDOMORPHISMES DES VARIÉTÉS HOMOGÈNES
PDF
237
Chapter: 1. Introduction
PDF
237
Chapter: 2. Endomorphismes des variétés complexes compactes
PDF
239
Chapter: 2.1 Dimension de Kodaira
PDF
240
Chapter: 2.2 Action d'un endomorphisme et ramification
PDF
241
Chapter: 2.3 Fibration d'Albanese
PDF
242
Chapter: 2.4 Petite dimension
PDF
243
Chapter: 2.5 Une question proche
PDF
243
Chapter: 3. Variétés homogènes kählériennes
PDF
244
Chapter: 3.1 Tores
PDF
244
Chapter: 3.2 Variétés de drapeaux
PDF
244
Chapter: 3.3 Cas général
PDF
247
Chapter: 4. Invariance de la fibration de Tits
PDF
248
Chapter: 4.1 La fibration de Tits
PDF
248
Chapter: 4.2 Première application
PDF
249
Chapter: 5. Quelques exemples
PDF
249
Chapter: 6. Existence de facteurs inversibles.
PDF
252
Chapter: 6.1 Structure de la fibration de Tits
PDF
253
Chapter: 6.2 Un théorème de Jörg Winkelmann
PDF
254
Chapter: 6.3 Endomorphismes agissant par automorphismes dans les fibres
PDF
255
Chapter: 6.4 Application
PDF
258
Chapter: 7. Endomorphismes irréductibles
PDF
258
Bibliography
PDF
261
Article: HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES
PDF
263
Abstract
PDF
263
Chapter: Introduction
PDF
263
Chapter: 1. An illustration
PDF
268
Chapter: 2. Mapping-telescopes and forest-stacks
PDF
271
Chapter: 3. Metrics
PDF
272
Chapter: 3.1 Horizontal and vertical metrics
PDF
272
Chapter: 3.2 Telescopic metric
PDF
275
Chapter: 4. Main theorem
PDF
276
Chapter: 5. PRELIMINARY WORK
PDF
278
Chapter: 5.1 About dilatation in cancellations
PDF
280
Chapter: 5.2 Straight telescopic paths
PDF
282
Chapter: 6. About straight quasi geodesics
PDF
283
Chapter: 7. Substitution of quasi geodesics
PDF
285
Chapter: 8. Approximation of straight quasi geodesics in fine position
PDF
288
Chapter: 9. PUTTING PATHS IN FINE POSITION
PDF
289
Chapter: 10. Straight quasi geodesic bigons are thin
PDF
291
Chapter: 11. Geodesic triangles are thin
PDF
293
Chapter: 12. Back to mapping-telescopes
PDF
296
Chapter: 12.1 Statement of the theorem
PDF
296
Chapter: 12.2 Proof of Theorem 12.4
PDF
298
Chapter: 13. About mapping-torus groups
PDF
298
Chapter: 13.1 Relationships with mapping-telescopes
PDF
299
Chapter: 13.2 Free group endomorphisms and forest-maps
PDF
301
Chapter: 13.3 Proof of Theorem 13.2
PDF
303
Bibliography
PDF
304
Article: THE BASIC GERBE OVER A COMPACT SIMPLE LIE GROUP
PDF
307
Abstract
PDF
307
Chapter: 1. Introduction
PDF
307
Chapter: 2. Gerbes with connections
PDF
309
Chapter: 2.1 Chatterjee-Hitchin gerbes
PDF
309
Chapter: 2.2 Bundle gerbes
PDF
310
Chapter: 2.3 Simplicial gerbes
PDF
311
Chapter: 2.4 Equivariant bundle gerbes
PDF
315
Chapter: 3. Gerbes from principal bundles
PDF
316
Chapter: 4. Gluing data
PDF
319
Chapter: 5. The basic gerbe over a compact simple Lie group
PDF
323
Chapter: 5.1 Notation
PDF
323
Chapter: 5.2 The basic 3-form on G
PDF
324
Chapter: 5.3 The special unitary group
PDF
326
Chapter: 6. Pre-quantization of conjugacy classes
PDF
329
Appendix: Appendix A. Proof of Lemma 4.4
PDF
331
Bibliography
PDF
332
Article: ANALYSE DE FOURIER DES FRACTIONS CONTINUES À QUOTIENTS RESTREINTS
PDF
335
Abstract
PDF
335
Chapter: 1. Introduction
PDF
335
Chapter: 2. Les ensembles F(A)
PDF
337
Chapter: 3. Dimension de Hausdorff
PDF
340
Chapter: 4. Une mesure spéciale
PDF
341
Chapter: 5. Intégrales oscillantes
PDF
344
Chapter: 6. Estimation de la transformée de Fourier
PDF
345
Chapter: 7. Une question de Montgomery
PDF
352
Chapter: 8. COMMENTAIRES ET QUESTIONS
PDF
354
Bibliography
PDF
355
Article: ON THE CLASSIFICATION OF RATIONAL KNOTS
PDF
357
Abstract
PDF
357
Chapter: 1. Introduction
PDF
357
Chapter: 2. Rational tangles and their invariant fractions
PDF
362
Chapter: 3. The classification of unoriented rational knots
PDF
373
Chapter: 3.1 The cuts
PDF
375
Chapter: 3.2 The flypes
PDF
384
Chapter: 4. Rational knots and their mirror images
PDF
392
Chapter: 5. On connectivity
PDF
393
Chapter: 6. The oriented case
PDF
395
Chapter: 7. Strongly invertible links
PDF
405
Bibliography
PDF
407
Rubric: BULLETIN BIBLIOGRAPHIQUE
PDF
29
Chapter: Généralités
PDF
29
Chapter: Histoire
PDF
35
Chapter: Logique et fondements
PDF
36
Chapter: Analyse combinatoire
PDF
36
Chapter: Théorie des nombres
PDF
37
Chapter: Corps et polynômes
PDF
38
Chapter: Géométrie algébrique
PDF
38
Chapter: Anneaux et algèbres
PDF
40
Chapter: K-théorie
PDF
41
Chapter: Théorie des groupes et généralisations
PDF
41
Chapter: Groupes topologiques ; groupes et algèbres de Lie
PDF
42
Chapter: Fonctions d'une variable complexe
PDF
42
Chapter: Fonctions de plusieurs variables complexes
PDF
43
Chapter: Équations différentielles ordinaires
PDF
44
Chapter: Équations aux dérivées partielles
PDF
44
Chapter: Systèmes dynamiques et théorie ergodique
PDF
44
Chapter: Approximations et développements en série
PDF
45
Chapter: Analyse de Fourier, analyse harmonique abstraite
PDF
46
Chapter: Analyse fonctionnelle
PDF
46
Chapter: Théorie des opérateurs
PDF
47
Chapter: Calcul des variations et contrôle optimal
PDF
47
Chapter: Géométrie
PDF
48
Chapter: Géométrie différentielle
PDF
48
Chapter: Topologie algébrique
PDF
49
Chapter: Topologie des variétés, analyse globale et analyse des variétés
PDF
50
Chapter: Probabilités et processus stochastiques
PDF
51
Chapter: Statistique
PDF
51
Chapter: Analyse numérique
PDF
52
Chapter: Informatique
PDF
53
Chapter: Mécanique des fluides, acoustique
PDF
53
Chapter: Biologie et sciences du comportement
PDF
54
Chapter: Information, communication, circuits
PDF
54
Back matter
PDF
Front matter
PDF
Index
PDF
Back matter
PDF
Back matter
PDF
Back matter
PDF