All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Volume 34 (1988)
Heading Page
Front matter
PDF
Index
PDF
Front matter
PDF
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE 1
Article THE SCHUR SUBGROUP OF THE BRAUER GROUP OF A LOCAL FIELD
PDF
1
Chapter K NON-DYADIC
PDF
2
Chapter Remarks
PDF
9
Bibliography
PDF
10
Article UNE CARACTÉRISATION DES NORMES EUCLIDIENNES EN DIMENSION FINIE
PDF
13
Chapter Introduction
PDF
13
Chapter I. Groupe des isométries linéaires
PDF
14
Chapter II. La boule unité de L(E)
PDF
15
Chapter III. Application au cas n = 2
PDF
18
Bibliography
PDF
21
Article EULER'S FAMOUS PRIME GENERATING POLYNOMIAL AND THE CLASS NUMBER OF IMAGINARY QUADRATIC FIELDS
PDF
23
Chapter Introduction
PDF
23
Chapter A) Quadratic extensions
PDF
25
Chapter B) Rings of integers
PDF
26
Chapter C) Discriminant
PDF
27
Chapter D) Decomposition of primes
PDF
27
Chapter E) Units
PDF
32
Chapter F) The class number
PDF
33
Chapter G) The main theorem
PDF
40
Bibliography
PDF
42
Article LE PROBLÈME DE GAUSS SUR LE NOMBRE DE CLASSES
PDF
43
Chapter I. La classification de Gauss des formes quadratiques
PDF
44
Chapter §1. FINITUDE DU NOMBRE DE CLASSES
PDF
44
Chapter §2. Formes quadratiques réduites
PDF
45
Chapter §3. Une méthode élémentaire pour calculer le nombre de classes
PDF
47
Chapter §4. Le groupe des classes
PDF
48
Chapter §5. Lien entre h(-d) et $h(-df^2)$
PDF
51
Chapter II. Le problème du nombre de classes
PDF
52
Chapter §1. Représentation des entiers par les formes quadratiques
PDF
53
Chapter §2. Fonctions zêta
PDF
55
Chapter §3. Ce que l'on espère sur le comportement de h( —d)
PDF
57
Chapter §4. Minorations non effectives de h(—d)
PDF
59
Chapter §5. Les cas h = 1 et h = 2
PDF
60
Chapter §6. Courbes elliptiques et fonctions L
PDF
61
Chapter §7. Le théorème de Goldfeld
PDF
64
Chapter §8. Le théorème de Gross et Zagier
PDF
65
Chapter §9. Conclusion
PDF
66
Article ON TORRES-TYPE RELATIONS FOR THE ALEXANDER POLYNOMIALS OF LINKS
PDF
69
Chapter §1. Introduction
PDF
69
Chapter §2. Torsions of chain complexes and manifolds
PDF
72
Chapter §3. Algebraic lemmas
PDF
74
Chapter §4. Proof of Theorems 1 and 2
PDF
76
Bibliography
PDF
82
Article EXTENSIONS DE MODULES ET COHOMOLOGIE DES GROUPES
PDF
83
Chapter Introduction
PDF
83
Chapter 1. Rappels sur les extensions
PDF
83
Chapter 2. DÉRIVATIONS ET EXTENSIONS
PDF
85
Chapter 3. Le groupe $H^1(G;A)$
PDF
87
Chapter 4. Le groupe $H^2(G;A)$
PDF
93
Article ABOUT THE PROOFS OF CALABI'S CONJECTURES ON COMPACT KÄHLER MANIFOLDS
PDF
107
Abstract
PDF
107
Chapter 0. Introduction
PDF
107
Chapter 1. The Monge-Ampère equation
PDF
108
Chapter 2. A Topological Lemma
PDF
110
Chapter 3. Local inversion
PDF
111
Chapter 4. Properness
PDF
111
Chapter 5. A PRIORI ESTIMATES: THE ORIGINAL WAY
PDF
114
Chapter 6. Coordinate free tensor calculus
PDF
114
Chapter 7. HIGHER ORDER A PRIORI ESTIMATES: GENERALITIES
PDF
115
Chapter 8. A PRIORI ESTIMATES OF ORDER FOUR
PDF
118
Chapter 9. A PRIORI ESTIMATES OF ORDER FIVE AND MORE
PDF
120
Chapter 10. The analytic point of view
PDF
121
Bibliography
PDF
121
Article QUILLEN'S THEOREM ON BUILDINGS AND THE LOOPS ON A SYMMETRIC SPACE
PDF
123
Abstract
PDF
123
Chapter §1. Notation and Preliminaries
PDF
128
Chapter §2. Topological Buildings
PDF
134
Chapter §3. Loop Groups
PDF
142
Chapter §4. Quillen's Theorem for Loop Groups
PDF
144
Chapter §5. The Loops on a Symmetric Space
PDF
147
Chapter §6. Examples
PDF
152
Chapter §7. Bott Periodicity
PDF
158
Appendix §8. Appendix : Real Forms and the generalized bruhat decomposition
PDF
161
Bibliography
PDF
165
Article ISOCLINIC n-PLANES IN $R^{2n}$ AND THE HOPF-STEENROD SPHERE BUNDLES $S^{2n-1} \rightarrow S^n,\quad n=2,4,8$
PDF
167
Chapter 0. Introduction
PDF
167
Chapter 1. Some results on isoclinic n-PLANES in $R^{2n}$
PDF
168
Chapter 2. SOME FURTHER RESULTS
PDF
173
Chapter 3. The sphère bundles $S^{2n-1} \rightarrow \Phi_n, \quad n=2,4,or 8$, WITH FIBERS ON MUTUALLY ISOCLINIC n-PLANES IN $R^{2n}$
PDF
181
Chapter 4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES
PDF
187
Chapter 5. COMPARISON OF OUR BUNDLES WITH THE HOPF-STEENROD BUNDLES
PDF
194
Appendix Appendix 1. The Cayley numbers
PDF
200
Appendix Appendix 2. The Hopf fibering and mutually isoclinic planes
PDF
201
Bibliography
PDF
204
Rubric COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
PDF
205
Article THE POPULARIZATION OF MATHEMATICS
PDF
205
Chapter 1. A GENERAL FRAMEWORK: NEEDS AND METHODS FOR THE POPULARIZATION OF SCIENCE
PDF
206
Chapter 2. Spécial features of the popularization of mathematics
PDF
207
Chapter 3. The methods of popularization
PDF
210
Chapter Call for papers
PDF
212
Chapter Previous ICMI Studies
PDF
213
Article THE THEORY OF GRÖBNER BASES
PDF
215
Chapter Introduction
PDF
215
Chapter 1. Notations and Definitions
PDF
216
Chapter 2. The Division Algorithm
PDF
220
Chapter 3. Construction of Gröbner Bases
PDF
223
Chapter 4. Application to Systems of Algebraic Equations
PDF
228
Chapter 5. Application to a Geometric Problem
PDF
230
Bibliography
PDF
231
Article GEODESICS IN THE UNIT TANGENT BUNDLE OF A ROUND SPHERE
PDF
233
Chapter 1. Geometry of the unit tangent bundle
PDF
235
Chapter 2. Geodesics in $US^2$
PDF
238
Chapter 3. Helices in $S^3$
PDF
239
Chapter 4. SASAKI'S EQUATIONS
PDF
240
Chapter 5. Proof of the Fundamental Constraint
PDF
243
Bibliography
PDF
246
Article THE EULER CLASS OF ORTHOGONAL RATIONAL REPRESENTATIONS OF FINITE GROUPS
PDF
247
Chapter 1. Invariant Bilinear Forms
PDF
248
Chapter 2. Orthogonal representations of p-groups
PDF
249
Chapter 3. Proof of the main theorem
PDF
252
Bibliography
PDF
253
Article UNE THÉORIE DE DENJOY DES MARTINGALES DYADIQUES
PDF
255
Chapter problème
PDF
255
Chapter solution: totalisation dyadique
PDF
257
Chapter Commentaires
PDF
261
Appendix Appendice: distribution de la fonction f
PDF
263
Chapter CITATIONS ET PASTICHE
PDF
266
Bibliography
PDF
268
Article AN ELEMENTARY PROOF OF THE STRUCTURE THEOREM FOR CONNECTED SOLVABLE AFFINE ALGEBRAIC GROUPS
PDF
269
Abstract
PDF
269
Rubric
PDF
270
Bibliography
PDF
273
Article KALUZA-KLEIN APPROACH TO HYPERBOLIC THREE-MANIFOLDS
PDF
275
Chapter §1. Introduction
PDF
275
Chapter §2. CONFORMAL COMPACTIFICATIONS AND THEIR TOPOLOGY
PDF
277
Chapter §3. Classification of Γ with $dim_H\Lambda(\Gamma)\leq 1$
PDF
284
Chapter §4. HODGE THEORY FOR HYPERBOLIC 3-MANIFOLDS
PDF
287
Chapter §5. Monopoles and Instantons
PDF
291
Chapter §6. Twistor spaces
PDF
295
Chapter §7. Atiyah-Ward ansatzes, summing 't Hooft solutions and elsenstein series
PDF
305
Bibliography
PDF
310
Article SOME ALMOST HOMOGENEOUS GROUP ACTIONS ON SMOOTH COMPLETE RATIONAL SURFACES
PDF
313
Chapter §1. Minimal embeddings: définitions and preliminary remarks
PDF
314
Chapter §2. The minimal B/Γ-embeddings
PDF
317
Chapter §3. Application to SL(2)-embeddings
PDF
331
Bibliography
PDF
332
Article REPRÉSENTATIONS ET TRACES DES ALGÈBRES DE HECKE POLYNÔME DE JONES-CONWAY
PDF
333
Chapter §0. Introduction
PDF
333
Chapter §1. Une description du polynôme de Jones-Conway
PDF
336
Chapter §2. Représentations des algèbres de Hecke
PDF
340
Chapter §3. Traces des algèbres de Hecke
PDF
342
Chapter §4. La trace T
PDF
345
Chapter §5. La trace de Jones-Ocneanu
PDF
348
Chapter §6. Une généralisation du polynôme de Jones-Conway
PDF
349
Bibliography
PDF
355
Article GLOBAL CONSTRUCTION OF THE NORMALIZATION OF STEIN SPACES
PDF
357
Chapter Introduction
PDF
357
Chapter 1. Example of a Stein space X with $\widetilde{O(X)} \neq O(\tilde{X})$
PDF
358
Chapter 2. Construction of $O(\tilde{X})$ from O(X) for Stein spaces X
PDF
360
Chapter 3. Applications
PDF
361
Bibliography
PDF
363
Article LES ÉQUATIONS DIFFÉRENTIELLES ONT 350 ANS
PDF
365
Chapter problèmes de Debeaune
PDF
365
Chapter «Discorsi» de Galilée
PDF
366
Chapter Newton
PDF
367
Chapter Solution du premier problème de Debeaune
PDF
369
Chapter problème de l'isochrone
PDF
370
Chapter caténaire
PDF
371
Chapter tractrice
PDF
373
Chapter L'ÉQUATION DIFFÉRENTIELLE «DE BERNOULLI»
PDF
374
Chapter Brachystochrone
PDF
375
Chapter PROBLÈMES ISOPÉRIMÉTRIQUES
PDF
377
Chapter Euler et Lagrange
PDF
379
Chapter Problèmes isopérimétriques, suite
PDF
380
Chapter Epilogue
PDF
381
Chapter Exercices
PDF
382
Bibliography
PDF
384
Article LES GRANDS THÈMES DE FRANÇOIS CHÂTELET
PDF
387
Chapter 1. Variétés de Severi-Brauer
PDF
387
Chapter 1.1. Avant Châtelet.
PDF
387
Chapter 1.2. La contribution de F. Châtelet [1943a] [1943b] [1944].
PDF
389
Chapter 1.3. Après les travaux de Châtelet.
PDF
391
Chapter 1.4. Importance des variétés de Severi-Brauer.
PDF
391
Chapter 2. Courbes de genre 1
PDF
392
Chapter 2.1. Avant Châtelet.
PDF
392
Chapter 2.2. La contribution de Châtelet [1938] [1941] [1946a] [1947a].
PDF
393
Chapter 2.3. Après Châtelet.
PDF
395
Chapter 2.4. Points de torsion.
PDF
395
Chapter 3. Surfaces cubiques
PDF
396
Chapter 3.1. Avant Châtelet.
PDF
396
Chapter 3.2. La contribution de Châtelet [1953] [1954 a] [1954b] [1958] [1959b] [1966].
PDF
397
Chapter 3.3. Après Châtelet.
PDF
399
Chapter ARTICLES DE FRANÇOIS CHÂTELET
PDF
401
Bibliography
PDF
403
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
1
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
41
Back matter
PDF