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(4.6) Theorem. Evaluation at 1 induces an isomorphism LalgG n Pj Gj.
In particular, LalgG n Pj is a compact Lie group.

Proof. We have seen that e maps LaigG n Pj onto Gj. The kernel is

QaigGnPj. But QaigG acts freely on SPG, and LalgG n Pj fixes À/5 so

QalgG nPI= {1}.

Remark. As always, I is a proper subset of S in (4.6). Of course (4.6)

also depends on our assumption that G is simple. Its discrete analogue is the

fact that Wj is finite if W is irreducible. (It may be helpful to consider
the "discrete" versions of all the results of this section. For example, the

discrete version of "üöZ0G acts freely on £G" is "the coroot lattice
Horn (S1, T) acts freely on t (the foundation of ^G)"; of course the latter
assertion is trivial).

Note that we have shown that SPG/QalgG G, and in fact the orbit
map SPG -> G is given by evaluation at t 1. This can also be proved
directly. It reduces to the following interesting theorem, also observed by
Quillen.

(4.7) Theorem. Suppose X, Y g g and exp X exp Y. Then exp tX
f(e2nit)exp tY for some feQalgG. -

It is not hard to prove this directly—for example, it is enough to prove
it for G U(n). Not surprisingly, however, it is also implicit in what we
have already one. First, one can reduce to the case when G is-simple and
simply-connected. Using (1.3), one can easily reduce further to the case
X e Aj, Y g • X for some g g G. Then g g Cg exp X Gj, so g h( 1) with
^ ^ LaigG Pii Pj. Tet h exp tX g exp tX j then h g LaigG and f /z/z( 1) ^

is the desired loop.

§ 5. The Loops on a Symmetric Space

We assume throughout this section that G is simple and simply—connected.
If a is an involution on G with fixed group K, as usual, then K is
connected and G/K is simply—connected. The notations and conventions of
§ 1 and § 3 remain in force.

The loop space Q(G/K) is homotopy equivalent to the space of paths
m G that start at the identity and end in K. Now consider the involution
t on QG given by x(/) (z) a(/(z~)). The fixed group (QGf is clearly
homeomorphic to our space of paths, since / g (£2G)t implies f(-l)eK.
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Henceforth we will always consider (f}G)T in place of Q(G/K). Note also

the definition of x extends to LG, LGC, and even LalgGc : for if / : C* - Gc

is a regular map, so is a ° / ° (zi—>z), since a is anti—complex on Gc.

(5.1) Theorem (Quillen). The inclusion (Q.algG)x -> (QG)T is a homotopy
equivalence.

We defer the proof to the end of this section.

Thus Q(G/K) can be thought of as a real form of QalgGc. More
precisely, (LalgGc)x is a real form of LaîgGc, and Q(G/K) is a homogeneous

space of this real form. For clearly P (regular maps C->Gc) is invariant
under x, so from (3.3) we obtain a corresponding "Iwasawa" decomposition.

(5.2) Theorem. The multiplication map (QalgG)x x Px (LaigGc)T is an

homeomorphism.

On the other hand B is of course not x-invariant in general, since B

is not a-invariant. However the parabolic subgroup Q corresponding to the

black nodes on the extended Satake diagram is clearly x-invariant; in fact

Q Q x G#, where U# {f e P: /(0) 1} (note U* is x-invariant). Now
consider Nc LalgNc. Since a preserves Nc, x preserves Nc. Note
Horn (S1, T) is also x invariant and in fact if / g horn (S1, T), if a(/(z)~x).
It follows that (hom(51, T))x hom (51, Tm) I^m. It is also easy to see

that Nxc n Q is normal in (Nc)x ; the quotient is IFR. Here we recall that
WR is the affine Weyl group associated to the restricted root system E;
it has a canonical set of Coxeter generators SR. Write GR, BR, NR, for
(GC)T, Q\ Nxc, respectively.

(5.3) Theorem. (Gr, Br iVR, 5R) is a topological Tits system satisfying the

four axioms (2.11 (2.12), (2.20) and (2.21

Before giving the proof, we discuss some corollaries. If I c= SR, we let

Qj denote the parabolic subgroup Pr of Gc; here T consists of the black
nodes of the extend ended Satake diagram together with the white nodes

that correspond under restriction to elements of I (for example, Q Q<|>)-

Then Qj is x-invariant and the parabolic subgroups (containing Qx) are

precisely the subgroups Q}. Let (9l Q}. The proof of (5.3) will show that
for the minimal parabolics (9S, s e SR, (9JBR is sphere of dimension

n(s) m(as) + m(2as) (here the multiplicity m(2as) is of course zero if 2as

is not a root). If s1 sk is a reduced decomposition of wg W1, let

n(w) n(sx) + ••• + n(sk).
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(5.4) Corollary. The Bruhat decomposition of GjJ(9j is a CW

decomposition, and the closure relations on the cells are given by the Bruhat order

on W r. Furthermore the cell series is ^

(5.5) Corollary (Bott-Samelson). QG/K has the homotopy type of a CW-

complex with cell series Ywew^ ^"(W)' w^ere I ^
The cell series obtained by Bott and Samelson ([7], Corollary 3.10) is

described in terms of the diagram for tm, but can be shown to agree

with the one above (cf. [25] for the case of QG). Bott and Samelson

also showed that the cells they constructed are all cycles mod 2. Here,

reverting temporarily to the notation of § 2, their result appears in the

following form.

(5.6) Theorem. Let (G, B, N, S) be a topological Tits system satisfying
the four axioms, and let P be a parabolic subgroup. Then the Bruhat
cells of G/P are all cycles mod 2.

Proof Let P Pj, I ^ S, and fix w e W1. Let sx sk be a reduced

decomposition of w. If k 1 then PSJB is a sphere and maps homeo-

morphically onto £Sl by xB h aP. Hence Ew is an integral cycle. In
general, consider the space F w PSi x ß PS2 x B... x B PSJB, and let
w' s2 ••• sk. By assumption each projection Ps PJB is a locally trivial
principal B-bundle, so the natural projection Xw PSJB is a locally trivial
fibre bundle with fibre Xw>. Hence we conclude by induction on k that
Xw is a topological manifold (not necessarily orientable). The fundamental
class in mod 2 homology is represented by the cell AS1 x AS2... x ASk in
Xw, where As ^ Ps is chosen as in the proof of theorem 2.22, and by the

Steinberg lemma (2.9) this cell is carried homeomorphically onto Ew under
the natural (multiplication) map Xw -» G/P. This proves the theorem.

Returning to our standard notation, we have :

(5.7) Corollary (Bott-Samelson). QG/K has mod 2 Poincaré series as
in (5.5).

In general one could ask for a combinatorial formula describing the
differential in the cellular chain complex: d[£w] Yx-^w axlExf where the
sum is over the xeW1 that immediately precede w in the Bruhat order,
and satisfy n(x) + 1 n(w). The problem is to determine the integers ax.



150 S. A. MITCHELL

Of course if the multiplicities m(aj, m(a2s) are all even, every cell is an

integral cycle. Here we recall that the multiplicities are all even if and only
if G/K is of "splitting rank" (not to be confused with the split form
mentioned earlier): that is, rank K + rank G/K rank G. For example,
G itself, regarded as a symmetric space, is of splitting rank, as is

SU(2n)/Sp(n).

(5.8) Corollary. If G/K is of splitting rank, the integral homology of
QG/K is concentrated in even dimensions, and the Poincaré series is given by
the series of (5.5).

The "somewhat mysterious application..." of Bott-Samelson ([7], 4.1) is

quite transparent from the present point of view.

(5.9) Theorem (Bott-Samelson). Suppose rank G/K rank G (i.e., GR

is the split real form of Gc). Then dim HfflG/K, Z/2) dim H2q(Q.G; Z/2).
Hence the mod 2 Poincaré series of Q.G/K is IIi 1

(1 — fmi)\ where

the mt are the exponents of G.

Proof By assumption, tm t. It follows at once that x preserves B
and is the identity on W ; hence x preserves the Bruhat cells in Gc/P.

Furthermore, each cell is identified with a complex vector space in such a

way that x corresponds to a linear conjugation. Since every cell is a cycle
mod 2, this proves the theorem. (In more detail, a preserves the root
subalgebras Xa, and of course acts anti-linearly. The same is true for x

acting on the XnoL, and hence (by definition) for x acting on the root
subgroups exp Xn a. In particular x acts by a conjugation on each Us, s e S.

But every cell can be identified with a product of subgroups Us, by the

Steinberg lemma.)

Remark. Bott and Samelson obtain similar results with Q(G/K) replaced

by suitable homogeneous spaces of K. For example, if rank G/K rank G,

they show that dim Hq(K/Cktm; Z/2) dim H2q(G/T, Z/2). These results also

fit neatly into the present context, using the topological Tits system

(Gr, Br, Nr, Sr). The points is that G/T Gc/B, K/Cktm GR/J3R, etc.

Proof of Theorem 5.3. Axiom (2.1) is easy and is left to the reader.

The proof of the remaining three axioms for an ordinary Tits system follows

a standard pattern and will only be sketched. The first step is to prove
the Bruhat decomposition directly. One way of doing this, which is of some

independent interest, is sketched in § 8. Briefly, the argument is as follows.
The g-orbits in Gc/g are vector bundles over certain flag varieties, and
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T acts on each orbit as a conjugate linear bundle automorphism. For the

orbit QwQ/Q, this action is free on the base unless we WR. Furthermore,

if weWR then QwQ BwQ so the Bruhat cell BwQ/Q is x-invariant. The

Bruhat decomposition for GR then follows by taking x fixed points of the

Q — Q double coset decomposition of Gc. In particular this proves that

Br, Nr generate GR. Axiom (2.3) is easy. For (2.4), we use induction

on / (w). The inductive step reduces to showing that sBR s BR u BR sBR,

which in turn can be deduced from the Bruhat decomposition for rank one

groups (already proved). (Cf. [33], Prop. 1.2.3.17, for the details of one
version of this argument.)

Axiom (2.11) is immediate since WR is an irreducible affine Weyl group
(see § 3). For the remaining axioms, we need to explicitly construct certain

subgroups Kt (analogues of the "little SG(2)" subgroups in the loop group
case), where Kt corresponds to the ith simple root ßt- of the affine restricted
root system Ë. When i ^ 0, Kt is the group of constant loops Kalready
constructed in § 1. K0 is constructed in the same way. Let I ç S be the
subset formed by taking the union of the black nodes and the special node
— a0 of the extended Satake diagram, and then taking the path component
of - cl0 in this smaller diagram. Let G7 LalgG n P7 (compare § 4). Then
Gj and its commutator subgroup G 7 are x-invariant subgroups and we define
K0 (G'jf. Note that K0 is a compact subgroup of GR; in fact evaluation
at 1 yields an embedding K0 -> K. (Note however that K0 does not consist
of K-valued loops.) The complexification of G7 is the subgroup G'c 7

generated by the root subgroups Ui9ie I. Passing to x-fixed points we obtain
a semisimple real form GR 0 with K0 as maximal compact. The structure of
these groups is easily read off from the Satake diagram.

Example. Let G S 1/(4), K Sp(2), as in § 1. Then S (0, 1, 2, 3)

A Bz^

Cz_1 D
and I (0,1, 3). The parabolic P7 consists of all matrices

m Gc with A, P, C, D 2 x 2 matrices over C[z]. GC J consists of the element
of Pj with A, P, C, D constant ; note evaluation at one is in this case ai
isomorphism onto the constant loops. In this example Gj G'j SU(4

and K0 is the subgroup of matrices as above with e Sp(2). In

12

particular K0 is isomorphic to Sp(2); note this in fact follows immediately
from the Satake diagram.

Now let (9t be the minimal parabolic <PR, 5f> ^ GR, as usual. In Axiom
(2.12) we take A,- Kt. Certainly Kt is compact and contains 1, and since
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Ki n Br is a subgroup of lower dimension, we have Kt Kt n £R stBR.
The Iwasawa decomposition of GRi shows that KtBR GRiBR. Now
(9t Br Br sßR, and BR ^BR UR iSiBr where UR f corresponds to the

positive roots ßf and (if 2is a root) 2ßt. Since UR t ^ GRti, this

completes the proof of (2.12). Note (VJBR A/AnJ3R. Since UR i is

homeomorphic to a real vector space of dimension rii mpf + m2ßl-, and

(9JBr is compact, we also conclude that (9fBR is a sphere of dimension nC9

and that -> (9JBR has a local section. This completes the proof of
Theorem 5.3.

Now let &GjK be the building associated to the topological Tits system
of (5.3). To prove Theorem 5.1, it is enough to show (as in § 4):

(5.4) Theorem (Quillen). (QalgG)x acts freely on ^G/X5 with orbit space

G/K.

Proof Bg/k is a quotient space of (QalgGf x K/CKtm x A, where À is

the Cartan simplex in tm (here we are using (5.2) ; note that {LalgG)x n PT

Ga K). Hence the orbit space of the (Qa^G)T-action is a quotient of
K/CKtm x A. As in the proof of (4.2), we see that the equivalence relation
here coincides with that of Theorem 1.9. Hence the orbit space is G/K,
as desired. To see that the action is free, we introduce the space of
special paths yG/K Path of the form f(e2nit) exp tX with / e (Q.aigGy and

X em. The proof now proceeds exactly as in (4.2); details are left to the

reader.

The other results of § 4 also go through : SPG/K is (LalgGf—equivariantly
homeomorphic to the building SfiGjK, and if X, Y e m, exp X exp Y implies

exp tX — f exp tY, where / g (QalgG)x.

§ 6. Examples

In this section we discuss six examples, the first four of which arise

in the Bott periodicity theorems (§ 7). The first and last examples are
discussed in some detail, the others are only sketched.

(6.1) Q(SU(2n)/Sp(n)). This is perhaps the simplest nonsplit example. SU(2n)
has an involution a given by a(A) JÄI-1, where J is the matrix
/0 -A
I J. The fixed group K is Sp(n). The extension of a to SL(2n, C)
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