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(4.6) THEOREM. Evaluation at 1 induces an isomorphism L,,G N Py = Gy.
In particular, L,,G n Py is a compact Lie group.

Proof. We have seen that e maps L,,G n P; onto G;. The kernel is
G n P;. But Q,,G acts freely on &;, and L,,G n P, fixes A;, so
G M PI = {1}.

Q
Q

alg

alg

Remark. As always, I is a proper subset of S in (4.6). Of course (4.6)
also depends on our assumption that G is simple. Its discrete analogue is the
fact that W, is finite if W is irreducible. (It may be helpful to consider
the “discrete” versions of all the results of this section. For example, the
discrete version of “Q, G acts freely on Bg” is “the coroot lattice
Hom (S*, T) acts freely on t (the foundation of #;)”; of course the latter
assertion is trivial).

Note that we have shown that &;/Q,,G = G, and in fact the orbit
map < — G 1s given by evaluation at t+ = 1. This can also be proved

directly. It reduces to the following interesting theorem, also observed by
Quillen.

(4.7) THEOREM. Suppose X,Yeqg and expX = exp Y. Then exptX
= f(e>™ exptY for some [ eQ,,G. - O

It is not hard to prove this directly—for example, it is enough to prove
it for G = U(n). Not surprisingly, however, it is also implicit in what we
have already one. First, one can reduce to the case when G is-simple and
simply-connected. Using (1.3), one can easily reduce further to the case
Xeld,, Yy = g+ Xforsomege G. Thenge Cszexp X = G;,s0g = h(l) with
heLyGn Pr.Leth = exptX gexp —tX; then he L,,G and f = hh(1)~*
i1s the desired loop.

§5. THE LoOPs ON A SYMMETRIC SPACE

We assume throughout this section that G is simple and simply—connected.
If ¢ is an involution on G with fixed group K, as usual, then K is
connected and G/K is simply—connected. The notations and conventions of
§ 1 and § 3 remain in force.

The loop space Q(G/K) is homotopy equivalent to the space of paths
in G that start at the identity and end in K. Now consider the involution
v on QG given by ©(f)(z) = o(f(z)). The fixed group (QG) is clearly
homeomorphic to our space of paths, since f €(QG) implies f(—1)e K.
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Henceforth we will always consider (QG)* in place of ((G/K). Note also
the definition of t extends to LG, LG, and even L,,G¢: for if f: C* - G¢
is a regular map, so is oo f o(z>z), since o is anti—complex on Gg.

(5.1) THeorReM (Quillen). The inclusion (Q,,G)* — (QG)* is a homotopy
equivalence.

We defer the proof to the end of this section.

Thus Q(G/K) can be thought of as a real form of Q,,Gc.. More
precisely, (L,,Go)* 1s a real form of L,,G¢, and ©(G/K) is a homogeneous
space of this real form. For clearly P (regular maps C—G¢) is invariant
under 1, so from (3.3) we obtain a corresponding “Iwasawa” decomposition.

(5.2) THEOREM. The multiplication map (Q,,G)* X P* — (L,;,Go)* is an
homeomorphism. L

On the other hand B is of course not t-invariant in general, since B
1s not o-invariant. However the parabolic subgroup Q corresponding to the
black nodes on the extended Satake diagram is clearly t-invariant; in fact
Q = Q x U” where U* = {f € P: f(0) = 1} (note U* is t-invariant). Now
consider N~C = L,y,Nc. Since o preserves N¢, T preserves ]\7C. Note
Hom (S*, T) is also t invariant and in fact if f € hom (S, T), tf = o(f(z)™ ).
It follows that (hom (S', T)) = hom(S%, Ty) = Ry It is also easy to see
that N c N Q is normal in (N.:)T the quotient is WR Here we recall that
WR is the affine Weyl group associated to the restricted root system z;
it has a canonlcal set of Coxeter generators SR Write GR, BR, NR, for
(GC) Q ¢, respectively.

(5.3) THEOREM. (G~R, ER, ﬁR, 5~'R) is a topological Tits system satisfying the
four axioms (2.11), (2.12), (2.20) and (2.21).

Before giving the proof, we discuss some corollaries. If I < §R, we let
QI denote the parabolic subgroup P, of GC; here I’ consists of the black
nodes of the extend ended Satake diagram together with the white nodes
that correspond under restriction to elements of I (for example, Q Q¢)
Then QI is 1-invariant and the parabohc subgroups (containing Q‘) are
precisely the subgroups Q 7. Let O = Q 7. The proof of (5.3) will show that
for the minimal parabolics 0, se SR, S/BR is sphere of dimension
n(s) = m(o,) + m(2ons)' (here the multiplicity m(2o) i1s of course zero if 2a
is not a root). If s;..s, is a reduced decomposition of we W’ let
nw) = n(sy) + = + n(sy).

A
o
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(5.4) COROLLARY. -The Bruhat decomposition of éR/@ ; isa CW decom-
position, and the closure relations on the cells are given by the Bruhat order
on WL. Furthermore the cell series is Zweﬁrﬂ (), ]

(5.5 COROLLARY (Bott-Samelson). QG/K has the homotopy type of a CW-

complex with cell series Zweﬁ,{{ "™ where I = Sg. I

The cell series obtained by Bott and Samelson ([7], Corollary 3.10) is
described in terms of the diagram for t,, but can be shown to agree
with the one above (cf. [25] for the case of QG). Bott and Samelson
also showed that the cells they constructed are all cycles mod 2. Here,
reverting temporarily to the notation of §2, their result appears in the
following form.

(5.6) TueoreM. Let (G, B, N,S) be a topological Tits system satisfying
the four axioms, and let P be a parabolic subgroup. Then the Bruhat
cells of G/P are all cycles mod 2.

Proof. Let P = P;, I < S, and fix we W' Let s;..s, be a reduced
decomposition of w. If k = 1 then P, /B is a sphere and maps homeo-
morphically onto Esl by xB+-xP. Hence E, is an integral cycle. In
general, consider the space X, = P, x P, X p.. x g P_ /B, and let
w = 5;..8,. By assumption each projection P; — Py/B is a locally trivial
principal B-bundle, so the natural projection X,, — P, /B is a locally trivial
fibre bundle with fibre X .. Hence we conclude by induction on k that
X, 1s a topological manifold (not necessarily orientable). The fundamental
class in mod 2 homology is represented by the cell 4, x A4, .. x A, in
X, , where A; < P 1s chosen as in the proof of theorem 2.22, and by the
Steinberg lemma (2.9) this cell is carried homeomorphically onto E, under
the natural (multiplication) map X,, — G/P. This proves the theorem. ]

Returning to our standard notation, we have:

(5.7) CoroLLARY (Bott-Samelson). QG/K has mod 2 Poincaré series as
in (5.5). O

In general one could ask for a combinatorial formula describing the
differential in the cellular chain complex: d[E,] = Zﬁw a.[E,], where the
sum is over the x € W' that immediately precede w in the Bruhat order,
and satisfy n(x) + 1 = n(w). The problem is to determine the integers a,.
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Of course if the multiplicities m(a,), m(a,,) are all even, every cell is an
integral cycle. Here we recall that the multiplicities are all even if and only
if G/K is of “splitting rank” (not to be confused with the split form
mentioned earlier): that is, rank K + rank G/K = rank G. For example,
G itself, regarded as a symmetric space, is of splitting rank, as is
SU(2n)/Sp(n).

(5.8) CororLLArY. If G/K is of splitting rank, the integral homology of
QG/K is concentrated in even dimensions, and the Poincaré series is given by
the series of (5.5).

The “somewhat mysterious application...” of Bott-Samelson ([7], 4.1) is
quite transparent from the present point of view.

(5.9) THEOREM (Bott-Samelson). Suppose rank G/K = rank G (i.e., Gy
is the split real form of G¢). Then dim H (QG/K, Z/2) = d1m H, (QG; Z)2).
Hence the mod 2 Poincaré series of QG/K is 1_[ — ™)1 where
the m; are the exponents of G.

~

Proof. By assumptlon tw = t. It follows at once that t preserves B
and is the identity on W hence Tt preserves the Bruhat cells in GC/P
Furthermore, each cell is identified with a complex vector space in such a
way that t corresponds to a linear conjugation. Since every cell is a cycle
mod 2, this proves the theorem. (In more detail, o preserves the root
subalgebras X,, and of course acts anti-linearly. The same is true for t
acting on the X, ,, and hence (by definition) for t acting on the root
subgroups exp X, ,. In particular t acts by a conjugation on each Uy, s € S.
But every cell can be identified with a product of subgroups U,, by the
Steinberg lemma.) n

Remark. Bott and Samelson obtain similar results with Q(G/K) replaced
by suitable homogeneous spaces of K. For example, if rank G/K = rank G,
they show that dim H(K/C,t,,; Z/2) = dim H,,(G/T, Z/2). These results also
fit neatly into the present context, using the topological Tits system
(Gg, Br, Ng, Sg)- The points is that G/T = G¢/B, K/Ct,, = Gg/Bg, etc.

Proof of Theorem 5.3. Axiom (2.1) is easy and is left to the reader.
The proof of the remaining three axioms for an ordinary Tits system follows
a standard pattern and will only be sketched. The first step is to prove
the Bruhat decomposition directly. One way of doing this, which is of some
1ndependent interest, is sketched in § 8. Briefly, the argument is as follows.
The Q orbits in GC/Q are vector bundles over certain flag varieties, and
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T acts on each orbit as a conjugate linear bundle automorphlsm For the
orbit QwQ/Q this action is free on the base unless w e WR Furthermore,
if we WR then QwQ BwQ so the Bruhat cell BwQ/Q is t-invariant. The
Bruhat decomposition for GR then follows by taking t fixed points of the
Q Q double coset decomposition of GC In particular this proves that
BR, NR generate G Axiom (2.3) is easy. For (2. 4) we use induction
on [(w). The inductive step reduces to showing that sBR s S BR U BR sBR,
which in turn can be deduced from the Bruhat decomposition for rank one
groups (already proved). (Cf [33], Prop. 1.2.3.17, for the details of one
version of this argument.)

Axiom (2.11) is immediate since WR is an irreducible affine Weyl group
(see § 3). For the remaining axioms, we need to explicitly construct certain
subgroups IZL- (analogues of the “little SU(2)” subgroups in the loop group
case), where IZ corresponds to the ith simple root {3; of the affine restricted
root system ¥. When i # 0, K 1s the group of constant loops Ky already
constructed in § 1. K0 is constructed in the same way. Let I = S be the
subset formed by taking the union of the black nodes and the special node
—a, of the extended Satake diagram, and then taking the path component
of —oa, in this smaller diagram. Let GI = L,,G n P; (compare §4). Then
G, and its commutator subgroup G 7 are t-invariant subgroups and we define
K, = (G 7). Note that KO i1s a compact subgroup of GR; in fact evaluation
at 1 yields an embedding K0 — K. (Note however that KO does not consist
of K-valued loops.) The complexification of G 1s the subgroup G
generated by the root subgroups UL, i € I. Passing to t-fixed points we obtam
a semisimple real form GR o With K0 as maximal compact. The structure of
these groups is easily read off from the Satake diagram.

Example. Let G = SU(4), K = Sp(2), as in §1. Then S = (0, 1, 2, 3)
) . A
and I = (0,1, 3). The parabolic P; consists of all matrices <C _y ]ZZ>
z
in G¢ with 4, B, C, D 2 x 2 matrices over Cl[z]. GC, ; consists of the elements
of P, with A, B, C, D constant; note evaluation at one is in this case an

~

isomorphism onto the constant loops. In this example G, = G’, = SU4)
and IEO is the subgroup of matrices as above with (1(4; §>6Sp(2). In

particular IZO is isomorphic to Sp(2); note this in fact follows immediately
from the Satake diagram.

Now let ; be the minimal parabolic <I§R, S; ) < GR, as usual. In Axiom
(2.12) we take A, = K Certainly K is compact and contains 1, and since
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~

K, n BR 1S a subgroup of lower dimension, we have K = K, n BRSBR
The Iwasawa decomposition of GR, shows that KBR = GR BR Now
O; = Bg  Bgs;Bg, and By s;Bg = Uy ;5,Bg, where Uy ; corresponds to the
positive roots PB; and (if 2B, is a root) 2pB,. Since Ug,: < GR,, this
completes the proof of (2.12). Note 0l/§R = l/K mBR Since Uy ; 1is
homeomorphlc to a real vector space of dimension n; = my; + m,;;, and

l/BR i1s compact, we also conclude that (OL/BR is a sphere of dimension n;,
and that 0O, — (DL/BR has a local section. This completes the proof of
Theorem 5.3. ]

Now let %/ be the building associated to the topological Tits system
of (5.3). To prove Theorem 5.1, it is enough to show (as in § 4):

(54) TueoreM (Quillen). (Q,,G)" acts freely on Bgx, with orbit space
G/K.

Proof. Bgi 1s a quotient space of (Q,,G)" x K/Cgt, x A, where A is
the Cartan simplex in ty; (here we are using (5.2); note that (L,,G)" n P"
= G° = K). Hence the orbit space of the (€,,G)"-action is a quotient of
K/Cgt,, x A. As in the proof of (4.2), we see that the equivalence relation
here coincides with that of Theorem 1.9. Hence the orbit space is G/K,
as desired. To see that the action is free, we introduce the space of
special paths %4 path of the form f(e*™)exptX with f €(Q,,G) and
X e m. The proof now proceeds exactly as in (4.2); details are left to the
reader. []

The other results of § 4 also go through: ¥k is (L,,G)*—equivariantly
homeomorphic to the building %k, and if X, Y e m, exp X = exp Y implies
exp tX = f exptY, where f € (Q,,G)".

§ 6. EXAMPLES

In this section we discuss six examples, the first four of which arise
in the Bott periodicity theorems (§ 7). The first and last examples are
discussed in some detail, the others are only sketched.

(6.1) Q(SU(2n)/Sp(n)). This is perhaps the simplest nonsplit example. SU(2n)
has an involution o given by o(4) = JAJ !, where J is the matrix

0 —1I
(I 0 ) The fixed group K is Sp(n). The extension of ¢ to SL(2n, C)
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