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14 G. LION

Notre travail s’achéve par I'étude d’un exemple qui illustre doublement
ce qui précéde: a la structure euclidienne dans R?, correspond la norme des
opérateurs dans #(R?), R espace de dimension 4; ainsi apparait une norme
non euclidienne dans R* Mais l'introduction des opérateurs 0/0z et 0/0z
permet de surcroit d’identifier #(R?) a C?, et de reconnaitre dans la norme
étudiée la norme [* de C2. Si I' désigne le groupe des isométries R linéaires
de #(R?) dans lui-méme, on peut distinguer dans I' trois sous-groupes
intéressants:

1) Un sous-groupe isomorphe a O(2) x O(2).

2) Le groupe des éléments de 1 de déterminant + 1, image de
0(2) x O(2) par la représentation d’indice 2 définie ainsi: Si v et w appar-
tiennent & O(2), on note @, ,, lapplication u > vuw™ !, de L(R?) dans lui-
méme; @, , est une isométrie de déterminant 1, et toute telle isométrie
peut s’écrire @, ,, pour un double choix du couple (v, w).

3) Le groupe des éléments C-linéaires de 1, dans lequel opere natu-
rellement le groupe ¢, a 2 éléments, ce qui le rend isomorphe au produit
semi-direct de SO(2) par lui-méme.

Je remercie le référé pour la documentation intéressante qu’il m’a
signalée.

I. GROUPE DES ISOMETRIES LINEAIRES

Dans ce paragraphe p désigne une fonction deéfinie et continue dans R”,
a valeurs strictement positives hors de 0, positivement homogene (pour que p
soit une norme il faudrait en plus que p soit symétrique et sous additive).

On note ¥, l'ensemble des applications lin¢aires u de R" dans R”"
telles que pou = p.

LEMME 1. ¥, est un groupe compact.

p

Démonstration. %, est stable pour la composition des applications; tout u
de %, est inversible car la relation u(x) = O implique p(x) = p e u(x) = 0,
d’ou x = 0. 4, est fermé en vertu de la continuité de p.

Etant continue, p atteint sur la sphere euclidienne unité une borne infé-
rieure a > 0, et une borne supérieure A ; on a donc, pour u e %,:

Al x| Zpx) =poux) =alux)]|.
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Par conséquent ¢, est un sous-ensemble born¢ de #(R”"), espace vectoriel des
endomorphismes de R”, normé par

lul = sup [ulx)l.

>l =1

LEMME 2. Pour tout groupe compact % contenu dans Z(R"), il existe
une forme quadratique ®, a valeurs strictement positives hors de 0, et
invariante par 4.

Démonstration. Soit p la mesure de Haar du groupe 4, et ¢ une forme

quadratique, a valeurs > 0 hors de 0; en posant ® = J © o udp(u), on
K7

définit une forme quadratique qui a les propriétés requises.

D’une autre fagon, on peut appliquer un théoréme démontré par
Hochschild ([4], XV 3-1): G, étant la composante connexe de ’élément neutre
du groupe de Lie G, on suppose G/G, fini; il existe alors un sous-groupe
compact K, tel que tout autre sous-groupe compact de G soit contenu
dans un conjugué de K; dans le cas présent on prend G = GL(n, R), et
le role de K peut étre joue par O(n) qui en est un sous-groupe compact
maximal.

II. LA BOULE UNITE DE #(E)

Soit E un espace vectoriel réel de dimension finie n, muni d’une norme N,

et Z(E) lespace vectoriel des endomorphismes de E muni de la norme A~
des opérateurs:

A(w) = sup N oux).

N(x) =1

Soit #y la boule unité fermée de L(E).

LEMME 1. Soit N non euclidienne, %y [lensemble des isométries

linéaires pour N, Ay [lenveloppe convexe fermée de Gy. Alors linclusion
Ay < HBy est stricte.

Démonstration. Le choix d’une base de E permet de se ramener a la
situation du paragraphe I, et de prouver I’existence d’une forme quadratique
> 0 hors de 0, invariante par %y. Munissons E de la structure euclidienne

définie par cette forme quadratique; de cette fagon %y est contenu dans
le groupe des isométries euclidiennes de E
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