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EULER’S FAMOUS PRIME
GENERATING POLYNOMIAL AND THE CLASS NUMBER
OF IMAGINARY QUADRATIC FIELDS

by Paulo RIBENBOIM

This is the text of a lecture at the University of Rome, on May 8,
1986. The original notes disappeared when my luggage was stolen in
Toronto (!); however, I had given a copy to my iend Paolo Maroscia,
who did not have his luggage stolen in Rome (!) and was very kind to
let me consult his copy. It is good to have friends.

INTRODUCTION

Can a non-constant polynomial, with integral coefficients, assume only
prime values?
No! because of the following

THEOREM. If f(X)e Z[X], deg(f) > 0, there exist infinitely many
natural numbers n such that f(n) is composite.

Proof. It is true if f(n) is composite for every n > 1. Assume that
there exists n, = 1 such that f(n,) = p is a prime. Since lim | f(n)| = oo,

n— O

there exists n; = ny, such that if n > n; then | f(n)| > p. Take any h
such that ny + ph = n,. Then | f(ny+ph)| > p, but f(ny+ph) = f(ny)
+ (multiple of p) = multiple of p, so | f(ny+ ph)| i1s composite. O

On the other hand, must a non-constant polynomial f(X)e Z[X] always
assume a prime value?

The question is interesting if f(X) is irreducible, primitive (that is, the
greatest common divisor of its coefficients is equal to 1) and, even more,
there is no prime p dividing all values f(n) (for arbitrary integers n).

Bouniakowsky, and later Schinzel & Sierpinski (1958) conjectured that
any polynomial f(X) e Z[X] satisfying the above conditions assumes a prime
value. This has never been proved for arbitrary polynomials. For the specific
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polynomials f(X) = aX + b, with gcd(a, b) = 1, it is true — this is nothing
else than the famous theorem of Dirichlet: every arithmetic progression

{a+ kb|lk=0,1,2,..} with gcd(a,b) =1,

contains infinitely many primes.

In my new book entitled “The Book of Prime Number Records”
(Springer Verlag, 1988), I indicated many astonishing consequences of the
hypothesis of Bouniakowsky, which were derived by Schinzel & Sierpinski.
But this is not the subject of the present lecture.

Despite the theorem and what I have just said, for many polynomials
it 1s easy to verify that they assume prime values, and it is even conceivable
that they assume prime values at many consecutive integers. For example,
Euler’s famous polynomial f(X) = X* + X + 41 is such that f(n) is a prime
forn = 0, 1, ..., 39 (40 successive prime values):

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281,
313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971,
1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.

However, f(40) = 40% + 40 + 41 = 40 x 41 + 41 = 41~
Note that if n > 0 then (—n)* + (—n) + 41 = (n—1)*> + (n—1) + 41, so
X? + X + 41 assumes also prime values for all integers

n=—40, -39, .,—-2 —1.

Which other polynomials are like the above ?

Some of these polynomials may be easily obtained from X? 4+ X + ¢
by just changing X into X — a, for some a > 1. For example, (X —a)*
+ (X—a) + 41 = X?> — 2a—1)X + (a*—a+41); taking a = 1 gives X?
— X + 41, which assumes primes values for every integer n, — 39 < n < 40,
while taking a = 40, gives X? — 79X + 1601, which assumes primes values
for every integer n, 0 < n < 79, but these are the same values assumed by
X? 4+ X + 41, taken twice. In summary, it is interesting to concentrate the
attention on polynomials of the form X? + X + ¢ and their values at
consecutive integers n = 0,1,.. If the value at 0 is a prime ¢ then
¢ = q. Since (q—1)*> + (g—1) + ¢ = ¢?, then at best X* + X + ¢ assumes
prime values for O, 1,2,..,qg — 2 (like when g=41). For example, if f(X)
= X?+X +¢q and q = 2,3,511,17,41 then f(n) is a prime for
n=~0,1,.,q9— 2 However if ¢ = 7,13,19, 23,29, 31,37 this 1s not true,
as it may be easily verified.

Can one find g > 41 such that X? + X + g has prime value for
n=201,.,q9—2?
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Are there infinitely many, or only finitely many such primes ¢? If so,
what is the largest possible g ?

The same problem should be asked for polynomials of first degree
f(X) = aX + b, with a,b > 1. If f(0) is a prime g, then b = q. Then
flg) = aqg + q = (a+1)q is composite. So, at best, aX + g assumes prime
values for X equal to 0, 1, .., g — 1.

Can one find such polynomials? Equivalently, can one find arithmetic
progressions of ¢ prime numbers, of which the first number is equal
to q?

For small values of g this is not difficult.

If g = 3, take: 3,5,7,s0 f(X) = 2X + 3.
If g = 5, take: 5,11, 17,23,29,s0 f(X) = 6X + 5.
If ¢ = 7, take: 7, 157, 307, 457, 607, 757, 907, so f(X) = 150X + 7.

Quite recently, Keller communicated to me that for ¢ = 11, 13 the smallest
such arithmetic progressions are given by polynomials f(X) = d{; X + 11,
respectively f(X) = dy3X + 13 with

d;; = 1536160080 = 2x3x5x7x7315048,
di; = 9918821194590 = 2x3x5x7x11x4293861989 ;

this determination required a considerable amount of computation, done by
Keller & Loh.

It is not known whether for every prime g there exists an arithmetic
progression of g primes of which the first number i1s g. Even the problem
of finding arbitrarily large arithmetic progressions consisting only of prime
numbers (with no restriction on the initial term or the difference) is still
open. The largest known such arithmetic progression consists of 19 primes,
and was found by Pritchard (1985).

The determination of all polynomials f(X) = X2 + X + g such that
f(n) is a prime for n = 0, 1, .., ¢ — 2, is intimately related with the theory
of imaginary quadratic fields. In order to understand this relationship,
I shall indicate now the main results which will be required.

A) QUADRATIC EXTENSIONS

Let d be an integer which is not a square, and let K = Q(ﬁ) be the
field of all elements o = a + bﬁ, where a,be Q. There is no loss of
generality to assume that d is square-free, hence d # 0 (mod 4). K| Q
1S a quadratic extension, that is, K is a vector space of dimension 2 over Q.
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Conversely, if K is a field, which is a quadratic extension of Q, then it is

necessarily of the form K = Q(ﬁ), where d is a square-free integer.

If d >0 then K is a subfield of the field R of real numbers: it is
called a real quadratic field.

If d <0 then K is not a subfield of R, and it is called an imaginary
quadratic field.

If o =a+ bﬁeK, with a,be Q, its conjugate is o = a — b\/:i.
Clearly, « = o exactly when o € Q.

The norm of o is N(o) = ao’ = a*> — db*e Q. It is obvious that
N(o) # 0 exactly when o # 0. If o, B € K then N(af) = N(a) N(B); in par-
ticular, if o € Q then N(o) = o

The trace of o is Tr(a) = o + o' = 2ae Q. If o, B € K then Tr(a+p)
= Tr(o) + Tr(P); in particular, if o € Q then Tr(a) = 2o

It is clear that o, o are the roots of the quadratic equation X? — Tr (o)X
+ N(o) = 0.

B) RINGS OF INTEGERS

Let K = Q(\/;l), where d is a square-free integer.

o € K is an algebraic integer when there exist integers m, n e Z such
that o> + moa + n = 0.

Let A be the set of all algebraic integers of K. A is a subring of K,
which is the field of fractions of A, and AN Q = Z. If € A then the
conjugate o € 4. Clearly, o € 4 if and only if both N(o) and Tr (o) are in Z.

Here is a criterion for the element o = a + bﬂ (a, beQ) to be an
algebraic integer: o € A if and only if

2a =uel, 2b=vel
u?> — dv*> = 0(mod 4) .

Using this criterion, it may be shown:
If d = 2 or 3 (mod 4) then 4 = {a + b\/d_la,beZ}.

b/d
Ifd = 1 (mod 4) then 4 — {f’i—z—\[-

a,beZ,a = b (mod 2)}.

If o, o, € A are such that every element o € A is uniquely of the form
o = mo; + myo,, with m;, m, € Z, then {o;, a,} is called an integral basis
of A. In other words, A = Zo; @ Za,.

If d = 2 or 3 (mod 4) then {1, ﬁ} is an integral basis of A.
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d . :
If d = 1 (mod 4) then {1, -1%\/»} is an integral basis of A.

C) DISCRIMINANT

Let {0y, a,} be an integral basis. Then

Tr (o2 Tr (oclocz)>

= D, = det
D =Dy =de <Tr(oc1oc2) Tr(x2)

is independent of the choice of the integral basis. It is called the discriminant
of K. It is a non-zero integer.
If d = 2 or 3 (mod 4) then

- Tr(l) Tr(/d\ , (2 0 B
D = det <Tr ( \/g) Tr(d) ) = det (O 2d> soD = 4d.
If d = 1 (mod 4) then

Tr (1) Tr<1+\/3) 2 1

2
D = det = det so D =d.

() wiEy)

Every discriminant is D = 0 or 1 (mod 4).
In terms of the discriminant,

A:{a—l—f\/ﬁ

a,beZ, a* EDbz(m0d4)}.

D) DECOMPOSITION OF PRIMES

Let K = Q(\/;I), where d is a square-free integer, let A4 be the ring of
integers of K.

The ideal P # 0 of A4 is a prime ideal if the residue ring A/P has no
zero-divisors.

If P is a prime ideal there exists a unique prime number p such that
P~ Z = Zp, or equivalently, P 2 Ap.
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If I, J are non-zero ideals of A, it is said that I divides J when there
exists an ideal I, of A such that I. I, = J.
The prime ideal P containing the prime number p divides the ideal Ap.
If I is a non-zero ideal of A then the residue ring A4/I is finite. The
norm of I i1s N(I) = #(A/I).
Properties of the norm:
If I, J are non-zero ideals, then N(I.J) = N(I) N(J).
If I divides J then N(I) divides N(J).
If ae 4, o # 0, then N(Aa) = | N(o) | (absolute value of the norm of o). In
particular, if a € Z then N(Aa) = a*.
If the prime ideal P divides Ap then N(P) is equal to p or to p*.
Every ideal I # 0 is, in unique way, the product of powers of prime

1deals : n
I = H P,
i=1

If I, J are non-zero ideals, if I = J then I divides J.

Every ideal I # 0 may be generated by two elements, of which one may
be chosen in Z; if InZ = Zn then I = An + Ao for some o€ 4. In this
case, the following notation is used: I = (n, ).

Consider now the special case where p 1s a prime number. Then Ap
is of one of the following types:

Ap = P?, where P is a prime ideal: p is ramified in K.
Ap = P, where P is a prime ideal: p is inert in K.

Ap = P,P,, where P,, P, are distinct prime ideals: p is decomposed or
splits in K.
Note also that if Ap = I.J, where I, J are any ideals (different from A),
not necessarily distinct, then I, J must in fact be prime ideals.
I shall now indicate when a prime number p is ramified, inert or
decomposed, and also give generators of the prime ideals of A. There are
two cases:p # 2, p = 2.

d
Denote by (—) the Legendre symbol, so
p

(
[
(

0  when p divides d ,

SRR

> = + 1 when d is a square modulo p,
) = — 1 when d is not a square modulo p .

S T
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Let p # 2.

1) If p divides d then Ap = (p, \/d)*>
2) If p does not divide d and there does not exist aeZ such that
d = a* (mod p) then Ap is a prime ideal.

3) If p does not divide d and there exists a € Z such that d = a® (mod p)
then Ap = (p, a+ﬁ) (p, a—ﬂ).

Hence

d
1) p is ramified if and only if <E> = 0.

.. : L (d
2) pis inert if and only if <I—3> = — L.

d
3) pis decomposed if and only if (E> = + 1.

Proof. The proof is divided into several parts.
d

a) If (—) = — 1 then Ap is a prime ideal.
p

Otherwise Ap = P . P’ or P?, with PN Z = Zp. Let o€ A be such that
P = (p,o) 2 Ao so P| Ao, hence p divides N(P), which divides N(Ao)

= | N(a)|. If p| o then %eA and P = Ap. <l,g> = Ap, which is absurd.
p
So p k¥ o Then,

d = 2 or 3 (mod 4) oc:a-l—b\/g, with a, beZ

-
= 1 (mod 4) a:g_tzi\i_g, with a,beZ, a = b(mod?2)
N(o) = a? — db?
= I = p divides a? — db?,
N(o) = —

hence a® = db* (mod p) and so p ) b (otherwise p|a, hence p|a, which
- 18 absurd).

Let b" be such that bb" = 1 (mod p), so (ab')* = d (mod p), therefore either

d
+ pldor (;)) = + 1, which is a contradiction.
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d
b) If <~> = 0 then dp = (p, \/d)>
p
d
Indeed, let P = (p, \/;l), so P? = (p? p\/g, d) = Ap (p, \/3, —) since
p

d . d .
—e Z. But d is square-free, so gcd <p, —) = 1, hence P> = Ap and this
p p

implies that P is a prime ideal.

d
<) If(;) = — lthen Ap = (p, a++/d) (p, a—+/d), where 1 < a < p — 1

and g’ =

Indeed,
(p, a++/d) (p, a—/d) = (p*, pa+p/d, pa—p/d, &>~
:Ap(p,a+ﬁ,a~\/g, _ >'=Ap<p,a+\/d7,a—\/2,2a, _ ):Ap,

because gcd (p, 2a) = 1. If one of the ideals (p, a+ﬂ), (p, a—\/;l) is equal
to A, so is the other which is not possible.

So (p, a+ﬁ), (p, a—ﬁ) are prime ideals. They are distinct: if (p, a+\/3)
= (p, a—\/cf ) then they are equal to their sum

(p,a+\/;l,a—\/3) = (p,a—l—\/g,a—\/g, 2a) =

which is an absurd.
Finally, these three cases are exclusive and exhaustive, so the converse
assertions are also true. ]

(mod p).

Note. If d = 1 (mod 4) and d = a* (mod p) then

(p, a+/d) = (p, lla—1)+ o),

1 d d

where © = —iz—\/; and 2] = 1 (mod p). Hence, if <—
D

beZ,0 < b < p — 1,such that p divides N(b+ ) and moreoverifb = p — 1

then d = 1 (mod p). :
Indeed, a + \/d = a — 1 + 20. If 21 = 1 (mod p) then

(p,a+f (p, (a—1)+20) = (p, l(a—1)+ ).

> # — 1 there exists

4

d : . e
If <—> # — 1 then there exists a prime ideal P dividing Ap, where
p
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P = (p,a+ﬁ),0<a<p—1.

SoP = (p,b+o)with0 < b <p—1,b=l(a—1) (mod p).
Since P 2 A(b+ ) then p divides N(P), which divides N(b+ o). Finally,

2p—1+ 2p—1)* — d ..
if p divides N(p—1+0) = ( 4 \/‘> 4 then p divides

1—dsodzl(modp).

Letp = 2.
If d = 2 (mod 4) then 42 = (2, \/d)*
If d = 3 (mod 4) then 42 = (2, 1+./d)*
If d = 1 (mod 8) then 42 = (2, ®) (2, ®).
If d = 5 (mod 8) then A2 is a prime ideal.
Hence
1) 2 is ramified if and only if d = 2 or 3 (mod 4).
2) 2 is inert if and only if d = 5 (mod 8).
3) 2 is decomposed if and only if d = 1 (mod 8).

Proof. The proof is divided into several parts.

a) If d = 5 (mod 8) then A2 is a prime ideal.

Otherwise, A2 = P. P’ or P? with PnZ = Z2. Then there exists
ve A such that P = (2,a) 2 Ao, so P divides Ao and 2 divides N(P),
which divides N(«).

If 2| o then P = A2 (l, %) = A2, which is absurd. Thus

b d 2 2
Z,Va:a—Jrz—\/:, with a = b(mod?2), so N(a)z(—l——zib—.

From 2| N(x) then 8 divides a*> — db* = a* — 5b* = a* + 3b* (mod 8).

If a,b are odd then a? = b* = 1 (mod 8), so a* + 3b% = 4 (mod 8),
which i1s absurd. So a, b are even, a = 2a’, b = 2b’, and oo = a' + b’ﬂ,
2 divides N(o) = a’' % — db' 2.

Since d is odd, then da', b’ are both even or both odd.
If ', b’ are even then 2 divides o, which is absurd.

If a,b" are odd then o = a' + b’\/ZZ = (multiple of 2) + 1 + \/E
= (multiple of 2) + 20 = (multiple of 2), which is absurd.

b) If d = 1 (mod 8) then 42 = (2, ®) (2, ).
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Indeed,

1—d 1—d
(27 CO) (2; (D,) - <4, 2(0, 203,, T) = A2 (2, o, Q)’, ___8__> — AD ’

because ® + o' = 1.
Also (2, w) # (2, ®'), otherwise these ideals are equal to their sum
(2, », ®') = A, because ® + o' = 1.

c) If d =2 or 3 (mod 4) then 42 = (2, \/;1)2, respectively (2, 1+ﬂ)2.
First let d = 4e + 2 then

(2,/d)* = (4,2/d, d) = A2Q2,./d, 2e+1) = A2,

so (2, \/3) is a prime ideal.
Now, let d = 4e + 3, then

(2, 1+/d)? = (4,24+2/d, 1 +d+2./d) = (4,242./d, He+1)+2./d)
= A22, 1+./d, 2e+1)+./d) = A2(2, 2e+1,14+./d, 2Ae+1)+/d) = A2

and 50 (2, 1 ++/d) is a prime ideal.
Finally, these three cases are exclusive and exhaustive, so the converse
assertions also hold. |

E) Units

The element o€ A4 is a unit if there exists e A such that af = 1.
The set U of units is a group under multiplication. Here is a description
of the group of units in the various cases. First let d < 0.

Letd # — 1, — 3. Then U = {£ 1}.

Letd = — 1. Then U = {£ 1, + i}, with i = \/——1

Let d = — 3. Then U = {+ 1, + p, + p*}, with p®> =1, p # 1, ie.

1+ ./=3
5 .

Let d > 0. Then the group of units is the product U = {+ 1} x C,
where C is a multiplicative cyclic group. Thus C = {¢"|n e Z}, where ¢ is
the smallest unit such that € > 1. € is called the fundamental unit.

p:

A
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F) THE CLASS NUMBER

The theory of quadratic number fields originated with the study of
binary quadratic forms aX? + bXY + cY? (where a, b, ¢ are integers and
ac#0). The discriminant of the form is, by definition, D = b* — 4ac. Note

D :
that D = 0 or 1 (mod 4); let d = 1 or d = D, respectively.

An integer m is said to be represented by the form if there exist
integers x, y such that m = ax® + bxy + ¢y

If a form ¢ X'? + PX'Y' + c'Y'? is obtained from the above form by a
linear change of variables

X = hX' + kY’
Y = mX' + nY’

where h, k, m, n are integers and the determinant is hn — km = 1, then the
two forms represent the same integers. In this sense, it is reasonable to
consider such forms as being equivalent. Clearly, equivalent forms have the
same discriminant.

In “Disquisitiones Arithmeticae” Gauss classified the binary quadratic
forms with a given discriminant D. Gauss defined an operation of composition
between equivalence classes of forms of a given discriminant. The classes
constitute a group under this operation. Gauss showed that, for any given
discriminant D, there exist only finitely many equivalence classes of binary
quadratic forms.

The theory was later reinterpreted, associating to each form aX? + bXY

+ ¢Y? of discriminant D, the ideal I of Q(\/E) = Q(\/IS) generated by a and

~b+./D
2

exists a non-zero element o € Q(\/c}) such that I = Ao.I'. Then, equivalent
binary quadratic forms correspond to equivalent ideals, and the composition
of classes of forms corresponds to the multiplication of equivalence classes of
ideals. Thus, Q(ﬁ) has finitely many classes of ideals. Denote by h = h(d)
- the number of classes of ideals, or class number of the field Q(\/;l).

The class number h(d) = 1 exactly when every ideal of Q(\/E) 1s a principal
“1deal.

Gauss conjectured that for every h > 1 there exist only finitely many

imaginary quadratic fields Q(ﬂ) (with d <0) such that the class number is
+equal to h. Soon, I shall say more about this conjecture.

. Define two non-zero ideals I, I’ to be equivalent when there
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I shall now indicate how to calculate the class number of the quadratic
field Q(\/B). Define the real number 6 as follows:

1./D if D>O0,

2 )
—/—D if D<Q0.
T

9:

A non-zero ideal I of A is said to be normalized if N(I) < [0] (the
largest integer less than or equal to 0). The ideal I is said to be primitive
if there does not exist any prime number p such that Ap divides I.

Let A" denote the set of normalized primitive ideals of A.

If Te A", if p is a ramified prime then p? ) N(I), and if p is an inert
prime, then p A N(I). So,

NO= [ rx [I p@.

r ramified p decomposed

It may be shown that every class of ideals contains a primitive normalized
ideal. Since for every m > 1 there exist at most finitely many ideals I
of A such that N(I) = m, this implies, once more, that the number of
classes of ideals is finite.

Note that if A4~ consists only of the unit ideal 4 = A.1, then h = 1.
Thus, if every prime p such that p < [0] is inert, then h = 1. Indeed,
if I e & then N(I) = 1, so I is the unit ideal, hence h = 1.

Denote by N(A”) the set of integers N(I), where [ € A"

In order to decide if the ideals I,J e A" are equivalent, it will be
necessary to decide which integers m € N(A") are of the form m = N(Aw).

Let m > 1, let

u + v/d when d=2or3(mod4), with u,veZ,

d
y—iz—v\—/: when d = 1 (mod 4), with u,veZ,u = v(mod 2).

Then: Aax is a primitive ideal with N(Aa) = m if and only if
m = |u*>— dv?*|, ged(u,v) = 1 if d=2or3(mod4)

2_d2 _
mzl—u—z—lﬂ—'—, gcd(uzv, v) =1 if d=1(mod4

(this is called the primitive representation of m).
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Proof. Let d=2 or 3 (mod 4), m = N(do) = |u?> — dv*|, also
ged (u, v) = 1, because Aa is primitive.

2 7.2 —_
I—-Lf—46-l—v——|, also if p divides !

Let d = 1 (mod 4), m = N(4o) =

u—uv 1+./d ,
and p divides v then p divides o = 5 + v( 2f>, against the

hypothesis.
Conversely, let d = 2 or 3 (mod 4), so N(Ao) = m: if p divides Aa,

since {1, \/2} is an integral basis then p | u, p | v, which is absurd.
Let d = 1 (mod 4), so N(Aa) = m; if p divides Aa, since

o = £l + v(l—i—z\/g) and {l,i—%—fi}

2

Y and v, which is absurd. ]

is integral basis, then p divides

Calculation of the class number.

Letd > 0,50 0 = 3./D.

[0] =

Since 1 <41./D < 2 then 4 < D < 16, with D = 0 or 1 (mod 4), hence
De{4,5,8,9,12, 13}, and therefore d € {5, 2, 3, 13}.

Now N(A") = {1}, hence A4 consists only of the unit ideal, and therefore
h = 1.

[6] =

Since 2 < 3./D < 3 then 16 < D < 36, with D = 0 or 1 (mod 4), hence
D e {16, 17, 20, 21, 24, 25, 28, 29, 32, 33} and therefore d € {17, 21, 6, 7, 29, 33}.
~ Now N(¥) = {1,2).

Take, for example d = 17. Since 17 =1 (mod 8) then 42 = P.P,

) 32 17 x 12 317
- N(P)=NFP)=22= | 1 l, gcd( > 17) = 1, hence

P = Aa , azg_fz_@,
oo, w2

2

¢ Therefore the class number is h = 1.
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Let d = 21. Since 21 = 5 (mod 8) then A2 is a prime ideal, 2 is inert,
hence h = 1.
Let d = 6, then 2 divides 24 = D, so 2 is ramified, 42 = P? and

2=122—6x 12|, ged(2,1) = 1, hence P = Ao, with o = 2 + /6.
Therefore h = 1.

[6] = 3.

Since 3 < 1. /D < 4 then 36 < D < 64, with D = 0 or 1 (mod 4), hence
D € {36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61}
and therefore
de {37, 10, 41, 11, 53, 14, 57, 15, 61} .

Now N(A7) = {1, 2, 3}.
Take, for example d = 10. Since 2 divides 40 = D then 2 is ramified,

10 1
A2 = R?. Since (—3—) = <§> = 1 then 3 is decomposed, A3 = P.P'. The
ideals R, P, P' are primitive.
2 has no primitive representation: if 2 = |u? — 10v? | then u* = 1002
+ 2 = + 2 (mod 10), which is impossible.
3 has no primitive representation: if 3 = |u? — 10v? | then u?> = 10v?

+ 3 = 4+ 3 (mod 10), which is impossible.
Thus, R, P, P’ are not principal ideals. The ideals RP, RP’ are primitive. Also

—2x3 = —6=22-10x1%, ged(2,1) = 1, 2x3 = N(RP) = N(RP),

hence RP, RP’ are principal ideals. In conclusion, h = 2.

2
Letd < 0,500 = —./—D.

T

[0] = 1.
2

2
Sincel<—4/—D<2then%<|D|<n2,and|D|500r3(mod4),
I

hence | D | € {3,4, 7,8}, therefore de {—3, —1, —7, —2}. Now N(A) = 1,
hence A" consists only of the unit ideal, so h = 1.

[0] = 2.

2 9
Since2 < —./—D < 3thenn* < |D| <Zn2,andlD| = 0 or 3 (mod 4),
T

hence | D | € {11, 12, 15, 16, 19, 20}, therefore d € {—11, —15, —19, —5}.
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Take, for example, d = — 11. Since — 11 = 5 (mod 8) then 2 is inert,
and therefore h = 1.

Let d = — 5. Since 2 divides D = — 20 so 2 is ramified, 42 = P2

7 has no primitive representation: if 2 = |u? + 5v?| then u®> = — 5v°

+ 2 = 2 (mod 5), which is impossible. Also — 5 = 3 (mod 4). So P is not
principal and h = 2.
Let d = — 15. Since — 15 = 1 (mod 8) then 42 = P. P

2 has no primitive representation : if

2+ 1502 u—v
2:'” +4 0 I, with gcd( 3 ,v>:1,

then u? + 1502 = 8, so u?* =3 (mod 5), which is impossible. Also
— 15 = 1 (mod 4). Since P, P" are not principal ideals, then h = 2.
Letd = — 19. Since — 19 = 5 (mod 8) so 2 is inert, hence h = 1.

[6] = 3.

2 9
Since3 < =./—D < 4then% <|D| < 4n%and|D| = 0or 3 (mod 4),
T

hence
| D | € {23, 24, 27, 28, 31, 32, 35, 36, 39},
and therefore

de{—23, —6, —31, —35, —39}.

Take d = — 31. Since — 31 =1 (mod 8) then A2 = P.P. Since

B0 (DY L o 43 4 orime ideal
3 = 3 3 = — 1, 80 1sapr1melea..

2 has no primitive representation: if

2 312 .
_ I +4 L ith gcd<“2",u):1-,

then 8 = u® + 31v? which is impossible. Since — 31 = 1 (mod 4) then P, P’
are not principal ideals. If P, P’ are equivalent then P = P'.Aa so
P* = P.P'. Ao = AQ2x), so 4 = N(P?) = 4N(Av), hence N(Ao) = 1, thus
Ao = A, and P = P, which is absurd. In conclusion, h = 3.

These examples are enough to illustrate how to compute the class number,
at least for small values of the discriminant.

2
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Determination of all quadratic fields with class number 1.
Letd > 0.

It is conjectured that there exist infinitely many d > O such that Q(\/g)
has class number 1. This question is difficult to settle, but it is expected
that the conjecture is true.

For example, there exist 142 fields Q(\/c—l), with 2 < d < 500 having class
number 1.

Letd < 0.
It was seen that if .4/ consists only of the unit ideal, then h = 1.

But conversely:
Ifd <Oand h = 1 then & = {A4}.

Proof. If |D| <7, it is true. Let |D| > 7, let Ie A/, I # A, so there
exists a prime ideal P dividing I. Then N(P) = p or p?, where p is a prime
number. If N(P) = p? then p is inert and Ap = P divides I, so I would
not be primitive, which is a contradiction. If N(P) = p, since P divides [

then p < N(I) < [0] < —./|D|. If p has a primitive representation:

D
if d = 2 or 3 (mod 4) then d = 20 %0P = u?> — dv?, hence v # 0, therefore

D 64
ID| =z p=>=|d]| = %,507 > — = | D |, which is absurd;
T
, u? — dv?
if d =1 (mod 4) then d = D, so p = — hence v # 0, therefore
2 d D
—JID| =Zp = I——I = u , and again 7 > D, which is absurd.
T 4 4
Therefore P is not a principal ideal and h # 1, which is against the
hypothesis. ]

Gauss developed a theory of genera and proved:
If d <0 and if ¢t is the number of distinct prime factors of D, then

2~ divides the class number of Q(,/d).

Hence if h =1 then D = — 4, — 8 or — p, where p is a prime,
p = 3 (mod 4), henced = — 1, — 2 or — p.

From this discussion, it follows:
IfD=—3—4 —7 —8thenh = 1.
If D# —3, —4, —7, —8 and D= —p, p=3 (mod 4) then h = 1

if and only if # = {A} and this is equivalent to the following conditions:
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. —P
2 is inert in Q(./ —p), and if g is any odd prime, g < [6], then (—;;) = — 1,
ie., g is inert in Q(\/ —p)-

This criterion is used in the determination of all D <0, [D] < 200,
such that h = 1.

[6] = 1. This gives the discriminants D = — 3, —4, — 7, — 8.
[6] = 2. Now —20<D< — 1], with D = —p, p=3 (mod 4), so
D = — 11 or — 19.
Since — 11 = 5 (mod 8) then 2 is inert, so if D = — 11 then h = 1.
Similarly, since — 19 =5 (mod 8) then 2 is inert, so if D= —19
then h = 1.
[6] = 3. Now —39<D< —23, with D= —p, p =3 (mod 4), so
D = — 23 or — 31. But — 23 % 5 (mod 8), — 31 # 5 (mod 8), so the class
numbers of Q(./ —23) and of Q(,/ —31) are not 1. .
[0] =4 Now—59<D< —40,D = —p,p=3(modd),soD = — 43,
— 47, — 59. Since — 43 = 5 (mod 8) and (-‘-?) — — 1 then Q(/—43)

. —59 :
has class number 1. Since — 47 # 5 (mod 8) and — ) = 1 then 3 1s not

inert. So the class numbers of Q(,/ —47) and of Q(,/ —59) are not equal to 1.

The same calculations yield:
[6] = 5: D = — 67, with class number 1

[6] = 6: no discriminant
[6] = 7: no discriminant
[6] = 8: D = — 163, with class number 1.

This process may continued beyond 200, but leads to no other discri-
minant for which the class number is 1. Of course, this does not allow
to decide whether there exists any other such discriminant, nor to decide
whether there are only finitely many imaginary quadratic fields with class
number 1.

In a classical paper, Heilbronn and Linfoot showed in 1934, with
analytical methods, that besides the above examples there exists at most

another value of d < 0 for which Q(\/E) has class number 1. Lehmer
showed that if such a discriminant d exists at all, then |d| > 5 x 10°.
In 1952, Heegner proved that no other such d could exist, but his proof
contained some steps which were unclear, perhaps even a gap. Baker reached
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the same conclusion in 1966, with his method involving effective lower bounds
on linear forms of three logarithms; this is also reported in his article of
1971. At about the same time, unaware of Heegner’s result, but with
similar ideas, concerning elliptic modular functions, Stark proved that no
further possible value for d exists. -So were determined all the imaginary
quadratic fields with class number 1. It was somewhat an anticlimax when
in 1968 Deuring was able to straighten out Heegner’s proof. The technical
details involved in these proofs are far beyond the scope of the present
article.

This i1s the place to say that Gauss’ conjecture was also solved in the
affirmative. Thanks to the work of Hecke, Deuring, Mordell and Heilbronn,
it was established that if d < 0 and | d | tends to infinity, then so does the

class number of Q(ﬁ). Hence, for every integer h > 1 there exists only

finitely many fields Q(\/E) with d < 0, having class number h.

The determination of all imaginary quadratic fields with class number 2
was achieved by Baker, Stark, Weinberger.

An explicit estimate of the number of imaginary quadratic fields with
a given class number was obtained by the efforts of Siegel, Goldfeld,
Gross & Zagier. For this matter, I suggest reading the paper of Goldfeld
(1985).

G) THE MAIN THEOREM

THEOREM. Let g be a prime, let f(X) = X*> + X + q. The following
conditions are equivalent :
1) g =235 11,17, 41.
2) fn) isaprimefor n=20,12,.,q9— 2

3) Q(/1—4q) has class number 1.

Proof. The implication 1 — 2 is a simple verification.

- The equivalence of the assertions 2 and 3 was first shown by Rabi-
novitch in 1912. In 1936, Lehmer proved once more that 2 — 3, while
3 — 2 was proved again by Szekeres (1974) and by Ayoub & Chowla (1981),
who gave the simplest proof. The proof of 3 — 1 follows from the complete
determination of all imaginary quadratic fields with class number 1. Since
this implication requires deep results, I shall also give the proof of 3 — 2.

2—-3 let d=1—-—4g<0, so d=1 (mod 4). If g =2 or 3 then
d= —"7o0r — 11 and Q(\/E) has class number 1, as it was already seen.
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, 2
Assume now that g > 5. It suffices to show that every prime p < E“/ldl

is inert 1n Q(ﬁ).
First let p = 2;since ¢ = 2t — 1 thend = 1 —4g = 1 — 42t—1) =5

(mod 8), so 2 is inert in Q(/d).
Now let p # 2, p < 2 Jld| < </|d| and assume that p is not inert. Then
T

@) £ — 1 and, as it was noted, there exists beZ, 0 < b < p — 1, such
p

1+ ./d . .
that p divides N(b+ ), where ® = ——2—\[—, that is, p divides

1 —d
4

(b+o) (b+o) = b? + bo+0) + o0 = b*> + b +

—b2+b+q= fb).

It should be also noted that b # p — 1, otherwise as it was shown, p

divides 1 — d = 4¢g, hence p = q < /|d| = /|1—4q|, so ¢* < 4q — 1,
hence g = 2 or 3, against the hypothesis.

By hypothesis, f,(b) is therefore a prime number, hence /4g—1 > p
= f,(b) = f,(0) = g and again g = 2 or 3, against the hypothesis.

2 .
This shows that every prime p less than —./|d| is inert, hence h = 1.
T

31 If QL/1—4q) has class number 1 then d =1 —4g = — 7, — 11,
— 19, — 43, — 67, — 163, hence g = 2,3, 5, 11, 17, 41. ]

As 1 have already said, the proof is now complete, but it 1s still
interesting to indicate the proof of 3 — 2.

Assume that d = 1 — 4q and that the class number of Q(./—d) is 1.
Then either d = — 1, — 2, —3, —7, or d< — 7, so d = — p with
p = 3 (mod 4) and g > 2.

As noted before, 2 is inert in Q(./ —p), so p = 3 (mod 8). Next, I show
g : l
that if [ is any odd prime, | < g, then (-) = — 1. Indeed, if <£> =1
' D p
then I splits in Q(\/—p). But h = 1, so there exists an algebraic integer
a+ by/—p

2

o= such that Al = Ao. Ad’. Then I* = N(Al) = N(Aa). N(Ax)

a’ + b?p

= N(Ao)* = N()?, so | = N(o) = 7

Hence p + 1 = 4q > 4l
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= a® + b?p, thus 1 > a? + (b>—1)p and necessarily a®> = 0, b> = 1, hence
4] = p, which is absurd.

Now assume that. there exists m,0 <m < g — 2, such that f(m)
= m® + m + q is not a prime. Then there exists a prime [ such that
P<m?*+m+qand m* + m+ g = al, with a > 1. Since m> + m + ¢

__1 2 1 2
is odd then [ # 2. Also 41> < 2m+1)? + p < <p_2_) +p = <%—) ,

hence | < 4

1 /
= g. As it was shown, (—) = — 1. However,
p

4al = @m+1)2 +4g — 1 = Cm+1)? + p,

hence — p is a square modulo [, so by Gauss’ reciprocity law,

() ()0 G )

and this 1s absurd. ]
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