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THE SCHUR SUBGROUP 9
REMARKS

There are several proofs and several formulations of this result (S(K)
when K is dyadic) in the literature. We shall briefly indicate why these
formulations are, with one exception, equivalent to the above one.

1. T. Yamada, [Y], p. 88. One formulation of Yamada’s theorem 1is that
S(K) is non-trivial iff there is a root of unity ( such that the inertia
group of the extension Q,()/K is non-cyclic. The inertia group of Q,(()/K
is the image of the inertia group of %(Q%/K), namely 4(Q¢%/K,,). The latter
group is of the form 22 x (Z/2) or 22, depending on whether or not
c_,€%QYYK). If o_,; ¢%9Q4/K), then it follows that the inertia group
of Q,(C)/K 1is always cyclic. Suppose o_; € %Q%/K). Then %(Q5%/K,,)
= Zz x 7/2 where the first factor is topologically generated by o 2" for
some kK > 0 and Z/2 is generated by o_,. If we choose { to have order
divisible by a power of 2 large enough so that o 2%{) # (, then it is clear
that the inertia subgroup of Q,({)/K 1s not cyclic. Thus the inertia group of
Q,(0)/K 1s non-cyclic iff o_, € 9(Q%/K), and so Yamada’s criterion 1is
equivalent to mine.

2. U. Fontaine, [F], Cor. 2, p. 138. The result is: S(K) is non-trivial iff
g4 ¢ K. This 1s easily seen to be inequivalent to the other formulations.
As an example, let K be the subfield of Q,(g;4) fixed by the automorphism
o_,0%. Then g, ¢ K and o_; ¢ 9(Q4/K).

3. G. J. Janusz, [J], p. 543. Let h be the smallest integer > 2 such that
there is an odd integer ¢ > 1 with the property that Q,(e,», €.) contains K.
Then Janusz’ theorem is the following:

S(K) is non-trivial iff there is an odd integer n with the following
properties:

(1) K(ey)/K is ramified.

(1) K(es,) = Qalezn, &,).

(i) (K(e,): K) = 2'w, where w isodd and r > 1.

(iv) The automorphism of order 2 in %(K(e,,)/K(,)) carries ey to &5:.

(V) If r<h—1, then any root of unity in K(e,,) whose order divides
2711 already lies in - K(g,).

It can be shown that the conditions (iii) and (v) can be omitted. Indeed
suppose that we are given an odd integer n such that (i), (1), and (iv) are
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satisfied. Let the the residue class field of K(g,) have 2* elements. Set
n = (29%" — 1. Then n|n, n' is odd, and K(e,)/K(e,) is unramified of
degree 2". Consider the conditions (i)-(v) with n’ instead of n. Then (i) is
unchanged, (i1) holds because n | v, (iii) holds trivially and (v) holds vacuously
because 2" | (K(e, ): K). Finally K(g,.) n K(es) = K since one is ramified and
the other is not, so the non-trivial automorphism of K(e,,)/K(€,) 1s the
restriction of that of K(e,, )/K(g, ), so (iv) holds also for n’.

We can deduce from this abbreviated form of Janusz’ theorem that it is
equivalent to Yamada’s. Suppose that Janusz’ conditions are satisfied, and
consider the extension Q,(e,n-+1, €,)/K. The inertia subgroup of its Galois
group is ¢ = %(Qs(en+1, €,)/K(e,)), a group of order 4. Suppose that p is an
extension of the non-trivial automorphism of Q,(e,x, €,)/K(g,) to Q,(€zn+1, €,),
so p € ¢. By condition (iv), there is an integer a = —1 (mod 2") such that
P(en+1) = €4n+1. It follows that p? is the identity. Thus 4 is non-cyclic.
Conversely suppose that there is an extension Q,(C)/K whose inertia subgroup
¢ 1s non-cyclic. As we saw in 1., this means that o_, is in the Galois
group of Q4/K and so its restriction (which we also call o_;) is In
%(Q4(e5n, €.)/K) and is non-trivial. Its fixed field contains K(g,); by Lemma 3.3
of [J], K(g,, e,) = Q,(e,n, €,) and so the fixed field is exactly K(e.). Thus
both (iv) and (i1) are also fulfilled. (1) holds by Lemma 1.

4. F. Lorenz, [ L], p. 463. His condition for non-triviality of S(K) is that
—1 is a norm in the extension K/Q,. The norm residue symbol in the
extension Q%/Q, sends —1 to o_; € 9(Q%/Q,). Thus it follows from [S],
pp. 204-205, that —1 is a norm in K/Q, iff o_; € 4(Q%/K).
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