Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	34 (1988)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	THE SCHUR SUBGROUP OF THE BRAUER GROUP OF A LOCAL FIELD
Autor:	Riehm, C.
Kapitel:	Remarks
DOI:	https://doi.org/10.5169/seals-56585

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 24.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

REMARKS

There are several proofs and several formulations of this result (S(K) when K is dyadic) in the literature. We shall briefly indicate why these formulations are, with one exception, equivalent to the above one.

1. T. Yamada, [Y], p. 88. One formulation of Yamada's theorem is that S(K) is non-trivial iff there is a root of unity ζ such that the inertia group of the extension $\mathbf{Q}_2(\zeta)/K$ is non-cyclic. The inertia group of $\mathbf{Q}_2(\zeta)/K$ is the image of the inertia group of $\mathscr{G}(\mathbf{Q}_2^c/K)$, namely $\mathscr{G}(\mathbf{Q}_2^c/K_{nr})$. The latter group is of the form $\hat{\mathbf{Z}}_2 \times (\mathbf{Z}/2)$ or $\hat{\mathbf{Z}}_2$, depending on whether or not $\sigma_{-1} \in \mathscr{G}(\mathbf{Q}_2^c/K)$. If $\sigma_{-1} \notin \mathscr{G}(\mathbf{Q}_2^c/K)$, then it follows that the inertia group of $\mathbf{Q}_2(\zeta)/K$ is always cyclic. Suppose $\sigma_{-1} \in \mathscr{G}(\mathbf{Q}_2^c/K)$. Then $\mathscr{G}(\mathbf{Q}_2^c/K_{nr}) = \hat{\mathbf{Z}}_2 \times \mathbf{Z}/2$ where the first factor is topologically generated by $\sigma_5^{2^k}$ for some $k \ge 0$ and $\mathbf{Z}/2$ is generated by σ_{-1} . If we choose ζ to have order divisible by a power of 2 large enough so that $\sigma_5^{2^k}(\zeta) \ne \zeta$, then it is clear that the inertia subgroup of $\mathbf{Q}_2(\zeta)/K$ is not cyclic. Thus the inertia group of $\mathbf{Q}_2(\zeta)/K$ is non-cyclic iff $\sigma_{-1} \in \mathscr{G}(\mathbf{Q}_2^c/K)$, and so Yamada's criterion is equivalent to mine.

2. U. Fontaine, [F], Cor. 2', p. 138. The result is: S(K) is non-trivial iff $\varepsilon_4 \notin K$. This is easily seen to be inequivalent to the other formulations. As an example, let K be the subfield of $\mathbf{Q}_2(\varepsilon_{16})$ fixed by the automorphism $\sigma_{-1}\sigma_5^2$. Then $\varepsilon_4 \notin K$ and $\sigma_{-1} \notin \mathscr{G}(\mathbf{Q}_2^c/K)$.

3. G. J. Janusz, [J], p. 543. Let h be the smallest integer ≥ 2 such that there is an odd integer $c \ge 1$ with the property that $\mathbf{Q}_2(\varepsilon_{2^h}, \varepsilon_c)$ contains K. Then Janusz' theorem is the following:

S(K) is non-trivial iff there is an odd integer n with the following properties:

- (i) $K(\varepsilon_4)/K$ is ramified.
- (ii) $K(\varepsilon_{4n}) = \mathbf{Q}_2(\varepsilon_{2^h}, \varepsilon_n).$
- (iii) $(K(\varepsilon_n): K) = 2^r w$, where w is odd and $r \ge 1$.
- (iv) The automorphism of order 2 in $\mathscr{G}(K(\varepsilon_{4n})/K(\varepsilon_n))$ carries ε_{2^h} to $\varepsilon_{2^h}^{-1}$.
- (v) If $r \leq h 1$, then any root of unity in $K(\varepsilon_{4n})$ whose order divides 2^{h-r+1} already lies in $K(\varepsilon_4)$.

It can be shown that the conditions (iii) and (v) can be omitted. Indeed suppose that we are given an odd integer n such that (i), (ii), and (iv) are

satisfied. Let the the residue class field of $K(\varepsilon_n)$ have 2^k elements. Set $n' = (2^k)^{2^h} - 1$. Then $n \mid n'$, n' is odd, and $K(\varepsilon_{n'})/K(\varepsilon_n)$ is unramified of degree 2^h . Consider the conditions (i)-(v) with n' instead of n. Then (i) is unchanged, (ii) holds because $n \mid n'$, (iii) holds trivially and (v) holds vacuously because $2^h \mid (K(\varepsilon_{n'}): K)$. Finally $K(\varepsilon_{n'}) \cap K(\varepsilon_4) = K$ since one is ramified and the other is not, so the non-trivial automorphism of $K(\varepsilon_{4n})/K(\varepsilon_n)$ is the restriction of that of $K(\varepsilon_{4n'})/K(\varepsilon_{n'})$, so (iv) holds also for n'.

We can deduce from this abbreviated form of Janusz' theorem that it is equivalent to Yamada's. Suppose that Janusz' conditions are satisfied, and consider the extension $\mathbf{Q}_2(\varepsilon_{2^{h+1}}, \varepsilon_n)/K$. The inertia subgroup of its Galois group is $\mathscr{G} = \mathscr{G}(\mathbf{Q}_2(\varepsilon_{2^{h+1}}, \varepsilon_n)/K(\varepsilon_n))$, a group of order 4. Suppose that ρ is an extension of the non-trivial automorphism of $\mathbf{Q}_2(\varepsilon_{2^h}, \varepsilon_n)/K(\varepsilon_n)$ to $\mathbf{Q}_2(\varepsilon_{2^{h+1}}, \varepsilon_n)$, so $\rho \in \mathscr{G}$. By condition (iv), there is an integer $a \equiv -1 \pmod{2^h}$ such that $\rho(\varepsilon_{2^{h+1}}) = \varepsilon_{2^{h+1}}^a$. It follows that ρ^2 is the identity. Thus \mathscr{G} is non-cyclic. Conversely suppose that there is an extension $\mathbf{Q}_2(\zeta)/K$ whose inertia subgroup \mathscr{G} is non-cyclic. As we saw in 1., this means that σ_{-1} is in the Galois group of \mathbf{Q}_2^c/K and so its restriction (which we also call σ_{-1}) is in $\mathscr{G}(\mathbf{Q}_2(\varepsilon_{2^h}, \varepsilon_c)/K)$ and is non-trivial. Its fixed field contains $K(\varepsilon_c)$; by Lemma 3.3 of [J], $K(\varepsilon_c, \varepsilon_4) = \mathbf{Q}_2(\varepsilon_{2^h}, \varepsilon_c)$ and so the fixed field is *exactly* $K(\varepsilon_c)$. Thus both (iv) and (ii) are also fulfilled. (i) holds by Lemma 1.

4. F. Lorenz, [L], p. 463. His condition for non-triviality of S(K) is that -1 is a norm in the extension K/Q_2 . The norm residue symbol in the extension $\mathbf{Q}_2^c/\mathbf{Q}_2$ sends -1 to $\sigma_{-1} \in \mathscr{G}(\mathbf{Q}_2^c/\mathbf{Q}_2)$. Thus it follows from [S], pp. 204-205, that -1 is a norm in K/\mathbf{Q}_2 iff $\sigma_{-1} \in \mathscr{G}(\mathbf{Q}_2^c/K)$.

REFERENCES

- [C-F] CASSELS, J. W. S. and A. FROHLICH. Algebraic Number Theory. Thompson Book Co. Inc., Washington (1967).
- [F] FONTAINE, J.-M. Sur la décomposition des algèbres de groupes. Ann. Sc. Ec. Norm. Sup. 49 (1971), 121-180.
- [H] HASSE, H. Zahlentheorie, 2nd ed. Akademie-Verlag, Berlin, 1963.
- [I] ISAACS, I. M. Character Theory of Finite Groups. Academic Press, New York (1976).