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PROBLEME DE GAUSS 55

-—163. D’aprés le début de ce paragraphe, on a r,(—163) = 0 pour
2 < n < 40. Par suite, —163 n’est un carré modulo aucun des nombres
premiers < 39, et le corollaire au théoréme ci-dessus implique que si
r(—163) # 0 et n < 412, nécessairement n est premier. Ceci explique
pourquoi la suite (découverte par Euler): 41, 43, 47, 53, 61, .., formée
par les valeurs de x? + x + 41 pour x > 0 ne comporte que des nombres
premiers jusqu’a 1601 (=392 +39+41).

§ 2. FONCTIONS ZETA

Il est fructueux de réinterpréter les résultats du paragraphe précédent
en introduisant des séries de Dirichlet génératrices: pour toute forme qua-
dratique g de discriminant —d, la série de Dirichlet

1 _
(16) Ugq, s) = 5 Y qlu, v)~*
(u,v)eZz-{(0,0)}

converge absolument pour Re(s) > 1 et 'on a

(17 a.9) = 429 3. nlan

e.9]

ou {(s) = ) n~* est la fonction zéta de Riemann. Comme (g, s) ne dépend

n=1

que de la classe C de g, on I’écrit aussi {(C, s).
La fonction {(g, 5) jouit de remarquables propriétés analytiques: la fonction

(18) Mg, s) = 24*2m) ~*T(s)K(g, 5)

admet un prolongement méromorphe a C, avec pour seuls poles des poles
simples en 0 et 1 de résidus —1 et 1, et vérifie Péquation fonctionnelle
Alg, 1 —s) = A(q, ). En effet, la fonction théta

(19) 6g,t) = > exp(—qn, m)27tt/ﬂ)

(n,m)e Z2

satisfait d’apres la formule sommatoire de Poisson a I’équation fonctionnelle
(20) 0(g, t7%) = 16(q, 1) ;

on a, par échange de la somme et de l'intégrale,

(21) Alg, 5) = JOO [0(g. )—1] ¢ dt,
0
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et 'on en deéduit Pexpression suivante de A(g, s), sur laquelle le prolongement
meromorphe, les pdles et leurs résidus, et 'équation fonctionnelle sont évidents

1
s(s—1)

(22) A(g, s) = + J [0(g, ) —1] (£~ L+t %)dr .

1

Soit K le corps quadratique imaginaire Q + Qiﬁ. On peut deduire du
dictionnaire entre formes quadratiques de discriminant —d et O(—d)-idéaux
fractionnaires (I., § 4) que I'on a

23) W) = Y UCH) =19 Y n(—dn

CeCl(—d)

S

ou (x est la fonction zéta du corps K (définie par (g(s) = )., Na™% ou a
parcourt 'ensemble des idéaux non nuls de 'anneau ((—d). Cette fonction
Cx jouit de propriétés analytiques analogues a celles des fonctions {(C, s):
en particulier, d’aprés ce qui précéde, elle a un podle simple en 1 de résidu

(24) .~ Res,_; (gls) = md~Y2h(—d).

Cette formule joue un role fondamental pour I'étude de h(—d) par voie
analytique.

Notons ¢ le caractére de Dirichlet n+— (——) Le théoréme de Gauss
n

du § 2, ou plutot son corollaire, traduit alors I'égalité entre séries de Dirichlet

0 1 —-s

ou encore, compte tenu de (24), 'égalité
(26) Ck(s) = C(s)Lx, s)

S

ot L(y,s) est la série de Dirichlet ) x(njn~°. Cette égalité équivaut & la
n=1

décomposition de (g en produit eulérien, décomposition que 'on prouve de
nos jours directement en utilisant la factorisation des idéaux dans 'anneau
de Dedekind O(—d).

En utilisant (25) et (26), nous allons reformuler le principe énoncé a la fin
du paragraphe précédent.

PRINCIPE. Supposons d grand et h(—d) petit. Alors,ona y(p) = —1
pour la plupart des petits nombres premiers p. Si A:N — {0} - {—1,1}
est la fonction qui a un produit de r nombres premiers (non nécessairement
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distincts) associe (—1), on a Mn) = y(n) pour la plupart des petits
nombres entiers n. La fonction (g(s) doit ressembler a la fonction {(2s).

Ces énoncés sont volontairement. vagues. Les rendre précis est souvent le
nceud des démonstrations de minorations de h(—d) lorsque d tend vers oo.

§3. CE QUE L'ON ESPERE SUR LE COMPORTEMENT DE h(—d)

On peut montrer que en moyenne (en un sens qui demande a étre
précisé, ce que je ne ferai pas ici), h(—d) est équivalent a une constante

non nulle fois ﬁ ; déja Gauss connaissait ce type de résultat ).

Il n’est pas vrai par contre que 3’1(—d)/\/3 admette un minorant > 0O
ou un majorant lorsque d tend vers +o00: on sait par exemple que

h(—d)/(\/c‘i log log d) ne tend pas vers 0 et que h(—d)loglog d/\/(} ne tend
pas vers + oo lorsque d tend vers + co.
On obtient cependant de fagon élémentaire des majorations raisonnables

: . 1
de h(—d) (raisonnable signifiant avec I’exposant 3 que Pon attend pour d),

de la forme h(—d) < Cﬁ log d. Par exemple:

PROPOSITION. On a pour d > 4

27) h(—d) < ' /dlogd.

Compte tenu de (24) et (26), il revient au méme de montrer que l'on a,

en posant y(n) = (j)

n

Y umyn < logd.
n=1

Or, pour tout nombre réel x > 0, la somme M(x) = Zn<x x(n) est majorée
par N(x) = inf ([x], [(d—1)/2]), et I'on a donc, en intégrant par parties

50 _ r AM(x) _ F M), F NGO

n - X ;X . x?

:rdN(x): Y 1n<logd.

- X n<[(d—1)/2]

') C.-F. Gauss, Disquisitiones Arithmeticae, n°® 302.
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