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- —163. D'après le début de ce paragraphe, on a rn(—163) 0 pour
2 ^ n < 40. Par suite, —163 n'est un carré modulo aucun des nombres

premiers ^ 39, et le corollaire au théorème ci-dessus implique que si

rn{—163) / 0 et n < 412, nécessairement n est premier. Ceci explique
pourquoi la suite (découverte par Euler): 41, 43, 47, 53, 61, formée

par les valeurs de x2 + x + 41 pour x ^ 0 ne comporte que des nombres

-premiers jusqu'à 1601 392 + 39 + 41).

§ 2. Fonctions zêta

Il est fructueux de réinterpréter les résultats du paragraphe précédent
en introduisant des séries de Dirichlet génératrices : pour toute forme
quadratique q de discriminant — d, la série de Dirichlet

(16) Ç(4, s) =7 £
^ (u,v)e Z2-{(0,0)}

converge absolument pour Re (s) > 1 et l'on a

oo

(17) t,(q, s)Ç(2s) £
n= 1

oo

où Cfsj £ n~sestla fonction zêta de Riemann. Comme Çfcy, s) ne dépend
n 1

que de la classe C de q, on l'écrit aussi Ç(C, s).

La fonction Ç(q, s) jouit de remarquables propriétés analytiques : la fonction

(!8) A{q, s) 2ds/2(2n)-T{s)^q, s)

admet un prolongement méromorphe à C, avec pour seuls pôles des pôles
simples en 0 et 1 de résidus — 1 et 1, et vérifie l'équation fonctionnelle
A(q, 1 — 5) A (q, s). En effet, la fonction thêta

(19) t) Y exP — m)2nt/^/d)
(n, m) e Z2

satisfait d'après la formule sommatoire de Poisson à l'équation fonctionnelle

(20) 9(g, t"1) td(q, t) ;

on a, par échange de la somme et de l'intégrale,

{* 00

(21) Ml,s) [0(4, t) -1] xdt,
J 0
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et l'on en déduit l'expression suivante de A(q, s), sur laquelle le prolongement
méromorphe, les pôles et leurs résidus, et l'équation fonctionnelle sont évidents

(22) A (q,s)—L- +
s(s-l)

[0(<2, t)-i] (ts-1 + rs)rft.
1

Soit K le corps quadratique imaginaire Q + Qiyfd. On peut déduire du
dictionnaire entre formes quadratiques de discriminant — à et (9(-d)-idéaux
fractionnaires (I., § 4) que l'on a

oo

(23) ÇK(s) X gc, s)Ç(2 X
CeCl(-d) n= 1

où est la fonction zêta du corps K (définie par t^K(s) °ù a

parcourt l'ensemble des idéaux non nuls de l'anneau — Cette fonction

jouit de propriétés analytiques analogues à celles des fonctions Ç(C, s) :

en particulier, d'après ce qui précède, elle a un pôle simple en 1 de résidu

(24) ResS=1^s) 7id~ll2h( — d).

Cette formule joue un rôle fondamental pour l'étude de h( — d) par voie

analytique.

f-d\Notons y le caractère de Dirichlet n h-» Le théorème de Gauss
V « /

du § 2, ou plutôt son corollaire, traduit alors l'égalité entre séries de Dirichlet

1 +p~s
(25) t 'i-nn-- n. u_rtn= 1 p premier IXfjF

ou encore, compte tenu de (24), l'égalité

(26) ÇK(s) «s)L(x, s)

00

où L(x, s) est la série de Dirichlet x(n)w_s- Cette égalité équivaut à la
n 1

décomposition de en produit eulérien, décomposition que l'on prouve de

nos jours directement en utilisant la factorisation des idéaux dans l'anneau
de Dedekind (9( — d).

En utilisant (25) et (26), nous allons reformuler le principe énoncé à la fin
du paragraphe précédent.

Principe. Supposons d grand et h( — d) petit. Alors, on a %(p) — 1

pour la plupart des petits nombres premiers p. Si X: N — {0} -> {— 1, 1}

est la fonction qui à un produit de r nombres premiers (non nécessairement
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distincts) associe (— l)r, on a X(n) %(n) pour la plupart des petits

nombres entiers n. La fonction ÇK(S) doit ressembler à la fonction Ç(2s).

Ces énoncés sont volontairement vagues. Les rendre précis est souvent le

nœud des démonstrations de minorations de h( — d) lorsque d tend vers co.

§3. Ce que l'on espère sur le comportement de h( — d)

On peut montrer que en moyenne (en un sens qui demande à être

précisé, ce que je ne ferai pas ici), h( — d) est équivalent à une constante

non nulle fois J~d\ déjà Gauss connaissait ce type de résultat 1).

Il n'est pas vrai par contre que h( — d)/y]d admette un minorant > 0

ou un majorant lorsque d tend vers + oo : on sait par exemple que

h{ — d)/(y/d log log d) ne tend pas vers 0 et que h( — d) log log d/yjd ne tend

pas vers + co lorsque d tend vers + oo.

On obtient cependant de façon élémentaire des majorations raisonnables

de h( — d) (raisonnable signifiant avec l'exposant ~ que l'on attend pour d),

de la forme h( — d) ^ C-J~d log d. Par exemple :

Proposition. On a pour d > 4

Compte tenu de (24) et (26), il revient au même de montrer que l'on a,

en posant %(n)

Or, pour tout nombre réel x > 0, la somme M(x) £ < yfn) est majorée
par N(x) inf ([x], [(d-l)/2]), et l'on a donc, en intégrant par parties

(27) h(—d)^n 1^/dlogd.

OO

E %(n)/n < log

n ^
X2 ^

1
X2

E 1 In<log
«'Il,/ I)2|

:) C.-F. Gauss, Disquisitiones Arithmeticae, n° 302.
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