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392 J.-L. COLLIOT-THÉLÈNE

En géométrie, i.e. dans l'étude des variétés définies sur le corps des

nombres complexes, les variétés de Severi-Brauer jouent un grand rôle

comme fibre générique de morphismes X -+ Y, dans l'étude des variétés qui
sont « proches d'être rationnelles » : variétés unirationnelles de divers types.
Ainsi, le fameux contre-exemple d'Artin/Mumford (1972) au problème de

Lüroth en dimension 3 (une variété qui est dominée par une variété
rationnelle n'est pas nécessairement rationnelle) est-il fourni par une telle

variété X fibrée au-dessus d'une surface rationnelle 7, la fibre générique
étant une conique sans point rationnel. D'autres variétés de Severi-Brauer

apparaissent dans l'étude des corps d'invariants d'actions linéaires presque
libres de groupes linéaires connexes.

Mais là où les variétés de Severi-Brauer ont sans conteste joué le rôle
le plus important, c'est dans la démonstration des théorèmes de Merkur'ev et

Suslin (1982) sur le groupe K2 des corps, ceci via le calcul de Quillen
(1973) de la K-théorie des schémas de Severi-Brauer. Ces théorèmes ont eu
des applications tant aux algèbres simples centrales sur un corps arbitraire
qu'à l'étude des groupes de Chow des variétés algébriques (classes de cycles

pour l'équivalence rationnelle).

2. Courbes de genre 1

2.1. Avant Châtelet.

En 1901, Poincaré montre qu'une courbe C de genre 1 définie sur un

corps k et qui possède un point /c-rationnel est isomorphe sur son corps de

définition à une courbe elliptique E de Weierstrass :

(E) y2 — x3 + ax + b

laquelle admet naturellement une loi de groupe avec élément neutre le point
à l'infini. Cette loi de groupe en induit une sur l'ensemble E(k) des points
rationnels. Poincaré formule l'hypothèse que pour k le corps Q des rationnels,
le groupe E(Q) est engendré par un nombre fini d'éléments. Ceci fut
démontré par Mordell en 1922 et généralisé par Weil en 1928 au cas où
k est un corps de nombres, et où E est la jacobienne d'une courbe de genre

quelconque. Weil donna aussi une méthode « élémentaire », qui passe par des

« factorisations ». On montre ainsi que pour E donnée par

V (x-e1){x-e2)(x
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on dispose d'une injection

E(k)/2E(k) - (/c*//c*2)2

(x, y) h» (x-e1? x-e2),

qui est d'image finie si k est un corps de nombres (théorème de Mordell-
Weil faible). Nous verrons au paragraphe 3 comment ceci inspira Châtelet

dans un autre contexte.

2.2. La contribution de Châtelet [1938] [1941] [1946a] [1947a].

La motivation initiale de Châtelet était de déterminer quand une courbe C

de genre 1 définie sur un corps k a un point rationnel. Il s'agissait là d'un

projet bien ambitieux: à ce jour on ne possède, dans le cas k Q,
d'aucun algorithme sûr pour ce faire. Voici les résultats que Châtelet obtint
(le corps k est simplement supposé parfait).

1) Pour C de genre 1 définie sur k, il existe une courbe elliptique E
I définie sur k (i.e. E de genre 1, et E(k) / 0) et un isomorphisme,
I défini sur k,

f : É cz C

| 2) A un tel isomorphisme on associe un 1 -cocycle

j °f ° /"1 e Z^G, Aut (£)), où G Gai (k/k).

j 3) On dispose d'une suite exacte de G-groupes :

j 1 -* E(k) Aut (£) -> F -» 1

j où F est un groupe fini, en général égal à {±1}. gn/tte à changer de

j courbe de référence E en 1), on peut assurer que aCT inezit de

I Z1(G, £(/c)). Cette condition détermine la courbe elliptique E (qui n'est
j autre alors que la jacobienne de E).

| 4) Deux courbes C et D de genre 1 définies sur k sont
j isomorphes sur k si et seulement si d'une part elles ont même jacobienne E,

d'autre part il existe b g E(k) tel que aa(C) - afD) - °b - b pour tout
a g G.

5) C(k) est non vide si et seulement si il existe b g E(k) tel que
aG ab — b pour tout a g G.

I"«
En termes modernes, 3) dit que C est un espace principal homogène sous

la courbe elliptique E, et 4) dit que l'ensemble des classes d'isomorphisme
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