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392 J.-L. COLLIOT-THELENE

En géométrie, i.e. dans I’étude des variétés définies sur le corps des
nombres complexes, les variétés de Severi-Brauer jouent un grand role
comme fibre générique de morphismes X — Y, dans I’étude des variétés qui
sont « proches d’étre rationnelles »: variétés unirationnelles de divers types.
Ainsi, le fameux contre-exemple d’Artin/Mumford (1972) au probléme de
Luroth en dimension 3 (une variété qui est dominée par une variété
rationnelle n’est pas nécessairement rationnelle) est-il fourni par une telle
variété X fibrée au-dessus d’une surface rationnelle Y, la fibre générique
étant une conique sans point rationnel. D’autres variétés de Severi-Brauer
apparaissent dans P'étude des corps d’invariants d’actions linéaires presque
libres de groupes linéaires connexes.

Mais la ou les variétés de Severi-Brauer ont sans conteste joué le role
le plus important, c’est dans la démonstration des théorémes de Merkur’ev et
Suslin (1982) sur le groupe K, des corps, ceci via le calcul de Quillen
(1973) de la K-théorie des schémas de Severi-Brauer. Ces théorémes ont eu
des applications tant aux algébres simples centrales sur un corps arbitraire
qu’a létude des groupes de Chow des variétes algébriques (classes de cycles
pour ’équivalence rationnelle).

2. COURBES DE GENRE 1

2.1. AvaNT CHATELET.

En 1901, Poincaré montre quune courbe C de genre 1 définie sur un
corps k et qui possede un point k-rationnel est isomorphe sur son corps de
définition a une courbe elliptique E de Weierstrass:

(E) y2 = x>+ ax + b,

laquelle admet naturellement une loi de groupe avec ¢lément neutre le point
a 'infini. Cette loi de groupe en induit une sur Pensemble E(k) des points
rationnels. Poincaré formule I'hypothése que pour k le corps Q des rationnels,
le groupe E(Q) est engendré par un nombre fini d’¢léments. Ceci fut
démontré par Mordell en 1922 et généralis¢ par Weil en 1928 au cas ou
k est un corps de nombres, et ou E est la jacobienne d’une courbe de genre
quelconque. Weil donna aussi une méthode « élémentaire », qui passe par des
« factorisations ». On montre ainsi que pour E donnée par

y2 = (x—e;) (x—e;) (x—e3)
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on dispose d’une injection

E(k)/2E(k) — (k*/k**)*

(x, y) = (x—ey, x—e,),

qui est d’image finie si k est un corps de nombres (théoréme de Mordell-
Weil faible). Nous verrons au paragraphe 3 comment ceci inspira Chatelet
dans un autre contexte.

2.2. LA CONTRIBUTION DE CHATELET [1938] [1941] [1946a] [19474].

La motivation initiale de Chatelet était de déterminer quand une courbe C
de genre 1 définie sur un corps k a un point rationnel. Il s’agissait la d’un
projet bien ambitieux: a ce jour on ne possede, dans le cas k = Q,
d’aucun algorithme sGr pour ce faire. Voici les résultats que Chatelet obtint
(le corps k est simplement supposé parfait).

1) Pour C degenre 1 définie sur k, il existe une courbe elliptique E

définie sur k (ie. E de genre 1, et E(k) # @) et un isomorphisme,
défini sur k,

f:E~C.

2) A un tel isomorphisme on associe un 1-cocycle

a, = °f o fT1eZYG, Aut(E)), ou G = Gal(k/k).
3) On dispose d’une suite exacte de G-groupes :
1 - E(k) - Aut(E) > F > 1,

ou F est un groupe fini, en général égal a {+ 1}. Quitte a changer de
courbe de référence E en 1), on peut assurer que a, vient de
ZY(G, E(k)). Cette condition détermine la courbe elliptique E (qui n’est
autre alors que la jacobienne de E).

4) Deux courbes C et D de genre 1 définies sur k sont
isomorphes sur k si et seulement si d’une part elles ont méme jacobienne E,
d’autre part il existe be E(k) tel que a,(C) — a D) = °b — b pour tout
ceqG.

5) C(k) est non vide si et seulement si il existe be E(k) tel que
a, = °b — b pour tout ceG.

En termes modernes, 3) dit que C est un espace principal homogene sous
la courbe elliptique E, et 4) dit que ’ensemble des classes d’isomorphisme
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