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EXTENSIONS DE MODULES
ET COHOMOLOGIE DES GROUPES

par Pierre-Paul GRIVEL

INTRODUCTION

Soit M et N deux modules a gauche sur un anneau R. Il est bien
connu que le groupe Extk(N ; M) classe, a équivalence pres, les n-extensions
de M par N.

D’autre part soit G un groupe et 4 un groupe abélien sur lequel
G agit a gauche. On définit le n-ieme groupe de cohomologie de G a
coefficients dans 4 comme étant le groupe HYG; A) = Ext%4(Z; A) ou Z
est considéré avec sa structure de ZG-module trivial; autrement dit
on définit les groupes H*(G;A) comme étant les dérivés du foncteur
Hom,4(Z; A) = A°.

Pour calculer ces groupes on utilise en général un complexe standard,
a laide duquel on obtient une interprétation des premiers groupes de
cohomologie.

Il paraissait intéressant d’obtenir directement 'interprétation de H(G ; A)
et H¥G;A) a partir de linterprétation de Extiy(Z;A) et Ext2Z4(Z; A),
sans avoir recours au complexe standard.

1. RAPPELS SUR LES EXTENSIONS

1.I. Soit R un anneau. Soit M et N deux R-modules & gauche. Une
n-extension de M par N est une suite exacte de R-modules

On—1

E:0-M3E B3E, 3.5 E3NS0.

Deux n-extensions & et & de M par N sont élémentairement
équivalentes s’il existe n morphismes de R-modules v:: E; —» E; tels que
Vi = o, agy; = Yieq® pour i = 1,2,.,n—1, et aly, = a,, ou n mor-
phismes de R-modules v;: E} — E; tels que y,o = q, oY; = Yi+ 10 pour
i=1,2,.,n—1,et oy, = o

n-
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Deux n-extensions & et & de M par N sont alors équivalentes s’il
existe une suite d’équivalences élémentaires reliant § a &'

On remarquera que dans le cas n = 1 I’équivalence élémentaire est déja
une relation d’équivalence car le morphisme y est alors un isomorphisme.

On notera [£] la classe d’équivalence de I’extension &.

1.2. Soit & une n-extension de M par N. Soit u: M - M' et v:N' - N
deux morphismes de R-modules.

Par produit cofibré on définit ’extension ug de M’ par N et par produit
fibré on définit 'extension {v de M par N'.

1.3. Soit g et & deux n-extensions de M par N. Notons V: M @ M — M Pap-
plication codiagonale définie par V(im,;m,) = m; + myet AAM > M @ M
lapplication diagonale définie par A(m) = (m;m). La somme de Baer de
[E] et [£'] est définie en posant [§] + [£'] = [V(EDBEHA].

Muni de cette opération 'ensemble des classes d’¢équivalence des n-exten-
sions de M par N est un groupe abélien.

1.4. 1l est bien connu que les classes d’équivalence des n-extensions de M
par N sont classées par le n-iéme foncteur dérivé ExtRj(N ; M) du foncteur
Homg(N ; M).

1.5. Considérons maintenant un groupe G et un groupe abélien A.

Une extension de 4 par G est une suite exacte de groupes
£0>ADBEBLGo1.
Si & et & sont deux extensions de A par G alors £ est équivalente

a & ¢’il existe un morphisme de groupe y:E — E' tel que YA = A\ et
Wy = . On notera [£] la classe d’équivalence de I'extension &.

1.6. Si & est une extension de A4 par G on définit un morphisme de
groupes 0: G — Aut (A4) en posant, pour tout g € G et a € A4,

AB(g) (a) = s(g)Ma)s(g) ™"

ou s: G — E est une section ensembliste de p. Ainsi le groupe abélien A
est muni d’une structure de ZG-module a gauche.

1.7. Si le groupe A est déja muni d’une structure de ZG-module a gauche
on désignera par e(G; A) I'ensemble des classes d’¢quivalence des extensions
de A par G telles que l'action de G sur A induite par lextension soit
égale a l'action donnée de G sur A.
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L’ensemble ¢(G ; A) n’est pas vide car il contient la classe d’équivalence
de I'extension

0-A4A5A4xG5G—1
donnée par le produit semi-direct.

1.8. Muni de la somme de Baer I'ensemble ¢(G;A) a une structure de
groupe abélien.

1.9. L’extension donnée par le produit semi-direct est scindée. Si
6:G — A x G est une section de ™ on a nécessairement o(g) = (f,(9);9)
ou f.(g)e A. Soit o, et o, deux sections de 7; on dit que o, est A-conjuguée
a o, sil existe un ¢élément ae A tel que, pour tout ge G, on a
c,(9) = (a)o,(g)(a)”t. On notera [c] la classe de A-conjugaison de la
section o et on désignera par h(G ; A) 'enserible des classes de 4-conjugaison
des sections de .

1.10. Si o, et o, sont deux sections de m on définit la section o, + o,
en posant (o, +6,) (9) = (f5,(9)+ £,,(9); g)- Cette opération induit sur h(G ; A)
une structure de groupe abélien.

2. DERIVATIONS ET EYTENSIONS

2.1. Soit G un groupe. L’anneau de groupe ZG est muni d’une augmen-

tation ¢: ZG — Z donnée par () n,g) = Y n,. Si on considére Z avec
geG geG

sa structure de ZG-module trivial & gauche, & est un morphisme de
ZG-module et on obtient une extension de Z.G-modules

051652657 -0

ou Iidéal d’augmentation IG est engendré, comme Z-module, par ’ensemble
lg —11geG\{1}}.
2.2. Soit A un ZG-bimodule.

Une dérivation de G dans A4 est une application f:G — A telle que, pour
tout g, h e G, on ait f(gh) = f(g)-h + g- f(h).

L’ensemble des dérivations de G dans A forme un groupe abélien noté

- Der (G; A).

Pour tout a € 4, 'application f,: G - A définie par f,(9) =g:-a—a-g
est une derivation, appelée dérivation intérieure de G dans A.
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