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EXTENSIONS DE MODULES
ET COHOMOLOGIE DES GROUPES

par Pierre-Paul Grivel

Introduction

Soit M et N deux modules à gauche sur un anneau R. Il est bien

connu que le groupe Ext nR(N;M) classe, à équivalence près, les n-extensions

de M par N.
D'autre part soit G un groupe et A un groupe abélien sur lequel

G agit à gauche. On définit le n-ième groupe de cohomologie de G à

coefficients dans A comme étant le groupe Hn(G;A) ExtZG(Z;^4) où Z
est considéré avec sa structure de ZG-module trivial; autrement dit
on définit les groupes H*(G ; A) comme étant les dérivés du foncteur
HomZG(Z ; A) AG.

Pour calculer ces groupes on utilise en général un complexe standard,
à l'aide duquel on obtient une interprétation des premiers groupes de

cohomologie.
Il paraissait intéressant d'obtenir directement l'interprétation de H1(G ; A)

et H2(G;A) à partir de l'interprétation de ExtZG(Z;^4) et Ext|G(Z;X),
sans avoir recours au complexe standard.

1. Rappels sur les extensions

1.1. Soit R un anneau. Soit M et N deux R-modules à gauche. Une
n-extension de M par N est une suite exacte de R-modules

Ç; 0 - M A Ex % E2 % V En % N - 0

Deux rc-extensions Ç et % de M par N sont élémentairement
équivalentes s'il existe n morphismes de R-modules yt: Et E\ tels que
Yitx a', afri Yi + iOtf pour i « 1, 2,.., n-1, et a'nyn a„, ou n
morphismes de R-modules yE\ ^ Et tels que y^oc' a, 0Lty\ y; + 1a'f pour

1, 2,.., n-1, et any'n a'n.
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Deux n-extensions £ et de M par N sont alors équivalentes s'il
existe une suite d'équivalences élémentaires reliant é, à

On remarquera que dans le cas n 1 l'équivalence élémentaire est déjà
une relation d'équivalence car le morphisme y est alors un isomorphisme.

On notera [£] la classe d'équivalence de l'extension

1.2. Soit £, une rc-extension de M par N. Soit u: M -> M' et v: N' ^ N
deux morphismes de R-modules.

Par produit cofibré on définit l'extension uÇ de M' par N et par produit
fibré on définit l'extension E,v de M par N'.

1.3. Soit £, et ^ deux n-extensions de M par IV. Notons V : M © M -> M
l'application codiagonale définie par V(mx ; m2) m1 + m2etA:M->M©M
l'application diagonale définie par À(m) (m ; m). La somme de Baer de

R] et R'] est définie en posant [Ç] + [£'] [V(Ç®Ç')A].

Muni de cette opération l'ensemble des classes d'équivalence des n-exten-
sions de M par N est un groupe abélien.

1.4. Il est bien connu que les classes d'équivalence des n-extensions de M
par N sont classées par le n-ième foncteur dérivé Ext nR(N;M) du foncteur

HomÄ(IV ; M).

1.5. Considérons maintenant un groupe G et un groupe abélien A.

Une extension de A par G est une suite exacte de groupes

^:0 ->• A ^ A G -» 1.

Si £, et sont deux extensions de A par G alors % est équivalente
à é,' s'il existe un morphisme de groupe y :£->£' tel que yX, U et

p'y p. On notera [£] la classe d'équivalence de l'extension

1.6. Si £ est une extension de A par G on définit un morphisme de

groupes 0 : G -> Aut (A) en posant, pour tout g e G et a e A,

XQ{g)(a) s

où s: G -> E est une section ensembliste de p. Ainsi le groupe abélien A

est muni d'une structure de ZG-module à gauche.

1.7. Si le groupe A est déjà muni d'une structure de ZG-module à gauche

on désignera par e(G ; A) l'ensemble des classes d'équivalence des extensions

de A par G telles que l'action de G sur A induite par l'extension soit

égale à l'action donnée de G sur A.
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L'ensemble e(G;A) n'est pas vide car il contient la classe d'équivalence

de l'extension

0->A±A x G^>G-+1

donnée par le produit semi-direct.

1.8. Muni de la somme de Baer l'ensemble e(G;A) a une structure de

groupe abélien.

1.9. L'extension donnée par le produit semi-direct est scindée. Si

a: G -+ A x G est une section de n on a nécessairement cj(g) (fG(g) ; g)

où fjgg) e A. Soit a1 et a2 deux sections de n; on dit que est ^4-conjuguée
à a2 s'il existe un élément a e A tel que, pour tout g e G, on a

ai($) i(a)a2(g)i(a)~1. On notera [a] la classe de v4-conjugaison de la
section a et on désignera par h(G ; A) l'ensemble des classes de ^4-conjugaison
des sections de n.

1.10. Si u1 et a2 sont deux sections de n on définit la section <j1 + a2
en posant (ax + a2) (g) fai(g) + fG2(g) ; g). Cette opération induit sur h(G ; A)
une structure de groupe abélien.

2. Dérivations et extensions

2.1. Soit G un groupe. L'anneau de groupe ZG est muni d'une augmentation

s: ZG -» Z donnée par e(£ ngg) Y, ng. Si on considère Z avec
geG geG

sa structure de ZG-module trivial à gauche, s est un morphisme de
ZG-module et on obtient une extension de ZG-modules

o^/g-^zg-4z->o
où l'idéal d'augmentation IG est engendré, comme Z-module, par l'ensemble
{g -1 I g e G\{1}}.

2.2. Soit A un ZG-bimodule.

Une dérivation de G dans A est une application -» telle que, pour
tout g, he G, on ait f{gh) f(g) h+ g• f

L'ensemble des dérivations de G dans A forme un groupe abélien noté
Der (G ; A).

Pour tout a e A, l'application fa: G -> Adéfinie par fjg) g-a - a-g
est une dérivation, appelée dérivation intérieure de G dans A.
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