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Donc @'(u) est une dérivation de G dans A. On vérifie immediatement que

(DI(D == 1Der(G;A) et que (D(D/ = 1H0mZG(1G;A) o

2.6. On rappelle que h(G;A) désigne le groupe abélien des classes de
A-conjugaison des sections de I'extension de groupes donnée par le produit
semi-direct 4 x G.

PROPOSITION. I] existe un isomorphisme de groupes abéliens

Der (G; A)

F:hG;A e
G4 =~ 146G 4)

Démonstration. 1l résulte de 1.9 qu’a toute section ¢: G - A x G on
peut associer une application f;: G — A telle que, pour tout ge G, on a
o(g9) = (f(9); g). Compte tenu de la loi de multiplication du produit semi-
direct et du fait que o est un morphisme de groupes, on vérifie que
f. e Der (G; A).

Si ¢’ est une section A-conjuguée a o, il existe un élément a € A tel que
co'(g9) = Wa)o(g)ua)~'; on en déduit que (f,(9);9) = (a+ fo(9)—g - a;g) donc
que f, — fo €lInt(G; A).

On définit alors application F en posant F([c]) = [f,], ou [f,] désigne
Der (G; A)

Int (G; A)

Il est immédiat de vérifier que F est un morphisme de groupes et que F

est bijective.

la classe de f, dans le groupe quotient

3. LE GROUPE HY(G; A)

3.1. Soit G un groupe. Comme d’habitude on munit Z de sa structure de
ZG-module 4 gauche trivial. De plus soit 4 un ZG-module a gauche; on
considere A comme un ZG-bimodule en faisant agir G trivialement sur la
droite de A.

On se propose de démontrer I'existence d’un isomorphisme de groupes
abéliens

Der (G; A
0. Der (G 4)

A 1 7.
‘Tt G A) — Bxtz4(Z; A).

Compte tenu de la définition des groupes H*(G ; A) et de la proposition 2.6,
on obtient alors le résultat classique suivant.
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3.2. THEOREME. Il existe un isomorphisme de groupes abéliens

HYG; A) = hG; A).

3.3.  Pour construire ’application ® on commence par considérer I’extension
de ZG-modules

0:0>IGS5ZGS5Z 50,

_ Der (G ; A) , , f e . 3
Soit [ f] € —————— représentée par une dérivation f € Der (G ; A); d’aprés
Int (G; A)
la proposition 2.5 on peut associer a f un morphisme f = o(f)
€ Hom,4(IG; A).
En faisant le produit cofibré de © par f on obtient I'extension de
Z.G-modules

f:0-43Fb7z50.

Le ZG-module F est le quotient de ZG x A par le sous-module engendré
par I'ensemble {(i(x); — f (x)) | x€IG}. Si m: ZG x A — F est la projection
canonique, les morphismes o et [ sont définis en posant afa) = w(0;a)
et Br(x; a) = &(x).

Si f"eDer(G;A) est un autre représentant de [f] on lui associe de
la méme fagon I’extension de ZG-modules

fo.0-a5Fr87z50.

3.4. LEMME. Les extensions f~ 0 et f'O sont équivalentes.

Démonstration. 1l faut construire un morphisme de ZG-modules 6: F — F’
tel que le diagramme

70—->7A_2>F_&Z_,0
BT N R
OQA;,)F'?ZAO

soit commutatif.
Par hypothese il existe be A4 tel que f' — f = f, ou f, € Int(G; A).
On définit alors un morphisme de ZG-modules

A'ZG x A—>ZG x A

en posant A(x;a) = (x;a—x-b).
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Si x € IG on peut écrire x = Y. n(g—1) si bien quen utilisant la propo-
geG

sition 2.5 on a

x-b =Y nfg-b—b) = Y n,fi(g) = Y, n,folg—1)

geG geG geG

= 5 (3 nlg—1) = fx).

geG

On a donc A(x; — f(x) = (x; — f(x)— fo(x)) = (x; — f(x)) et on définit 3
par la condition T'A = om.
On vérifie immédiatement que do = o' et f'0 = B.

3.5. L’application ® est alors donnée en posant O([ f]) = [ ]7 0].
3.6. On construit maintenant une application

Der (G; A)

W Exti(Z: A) > 2
XtzolZ; 4) = Int (G ; A)

Soit [£] € Ext34(Z ; A) représentée par une extension de ZG-modules
E:0ADSESZ 0.

Choisissons un ¢lément e € E tel que we) = 1 et considérons la dérivation
f.elInt (G; E).

Comme on a pf, = 0 on peut définir une application f°: G — A par
la condition Af° = f,.

37. LeMME. f°eDer(G;A) et [f¢] ne dépend pas du choix de e.

Démonstration. Pour tous g,he G on a

Af%gh) = (gh)-e —e =g-(h-e—e) +g-e — e
= g-Afh) + Lfg)
= Mg- fh) + f49).
Comme A est injectif il en résulte que f°e Der (G; A). Soit ¢ € E tel que
We') = 1; puisque ple—e') = 0 il existe b € 4 tel que AMb) = e — ¢
Considérons la dérivation f; € Int (G ; A). Pour tout g€ G on a
MfE=f)(g) = (g-e—e) — (g- € —¢)
= g+ Mb) — Mb)
= Mg-b—b) = Lfi(g).
Ainsi f¢ — f¢ e1Int(G; A) et par suite [ £°] ne dépend pas du choix de e.
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3.8.  Supposons maintenant que ’extension de ZG-modules
£:0 > AL E S 7Z 50

est un autre représentant de [£].
En choisissant un élément ¢’ € E’ tel que p'(¢’) = 1 on définit une déri-
vation f¢ € Der (G; A).

39. LeMME. [°¢ — f¢elnt(G;A).

Démonstration. Les extensions & et &' étant équivalentes, il existe un
morphisme de ZG-modules y: E — E’ tel que le diagramme

05 ASEBSZ >0

1,0 vl 11,
0—>A7,>E’L—,>Z——>O

soit commutatif.
Comme p'(y(e)—¢') = 0, il existe b e A tel que X' (b) = v(e) — €.
Considérons la dérivation f, € Int (G ; A). Pour tout g€ G on a
YMf= ) (g) = YAfg) — ¥ [ (9)
= 1lg-e—e) = (g-¢—e)
= g-(v(e)—¢) — (v(e)—¢)
— Mg -b—b)
= YAS(9) -

Comme vy est un isomorphisme et A est injectif il en résulte que
fe — f¥elnt(G; A).

3.10. On peut donc définir Papplication ¥ en posant W([£]) = [f¢], et il
faut vérifier que W est la réciproque de O.

Int (G; A)
Der (G; A)

Démonstration. Si [ f] em est représentée par f € Der (G; A)

alors YO([ f]) = Y([ f 0]) ou f0 est 'extension de ZG-modules
0-43F5z 50

~ décrite au n° 3.3.
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~

Par définition du produit cofibré de 6 par f il existe un morphisme
de ZG-modules v: ZG — F, défini par y(x) = m(x;0), tel que le diagramme

0 - IG > 2ZG S5 Z — 0

iyl L1y
0—>A-;> F —B>Z—->0

soit commutatif.

L'élément e = m(1;0) e F vérifie la condition P(e) = 1; donc ¥([ ]7 0]
est représentée par la dérivation f°€e Der (G; A4) telle que, pour tout g € G,
on ait af%g) = g-e —e = mg—1;0).

Or on a f¢ = f; en effet, compte tenu de la proposition 2.5 on a,
pour tout g € G,

a(fe—f)(g) = afig) — aflg—1)
= afg) — y(ig—1)
= m(g—1;0) —m(g—1;0) = 0.

3.12. LEMME (I)\Il = 1Ext%G(Z;A) .

Démonstration. Soit [E] e Extl.(Z; A) représentée par lextension de
Z.G-modules

£:0 5 ASESZ S0

et choisissons un élément ¢ € E tel que p(e) = 1; on a alors ®Y([E]) = [ ]7%6].

I1 s’agit donc de démontrer que les extensions & et ]7 °0 sont équivalentes;
pour cela il faut construire un morphisme de ZG-modules 0: E — F tel
que le diagramme

1,0 9/ l1g
O—)A?F—E)Z—)O

soit commutatif.
Si ue E on a p(u—p(u)e) = 0; on peut donc définir un morphisme de
groupes abéliens v: E — A tel que Av(u) = u — p(u)e pour tout u € E.

Définissons alors & en posant 6(u) = n(u(u);u(u)). Il faut vérifier que 6
est un morphisme de ZG-modules; orsige Getue E on a

g-0(u) — 8(g-u) = n(uw) (g—1);9 - v(u)—v(g - w).
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Mais

Mg - v(w)—v(g - ) = g - (u—pwe)—(g - u—pue)
= — Wu)(g-e—e)
= — pWf4g)
= M—pw) fAg—1).

Il en résulte que g - &(u) — d(g - u) = 0.
Finalement on vérifie immeédiatement que oA = a et o = M.

3.13. 1l reste a montrer que I'application ¥ est un morphisme de groupes
abéliens.

Soit [€;] € ExtLo(Z; A) (i=1, 2) représentée par I'extension de ZG-mrodules
£:0 > ASE 572 50.
On choisit un élément e; € E; tel que pfe;) = 1 et on considere la
dérivation [ € Der (G; A) définie par A, f(g) = g-e; — e;.
On a alors W([&,]) + W([&.]) = [f] + [f*] = [/ + /=1

Maintenant [£,] + [§,] est représentée par I'extension de ZG-modules
& = V(E;DEL)A et on a le diagramme commutatif suivant

A1 @ A2 p1 @ p2
0O - ApA - E, DPE, - Z&&Z - 0
Vi vl llz@z
(3.13.1) 0 — A - E e 797 - 0
1,1 - o1 TA
0 - A v Es — Z - 0.
0 Ko .

On choisit un élément e, € E, tel que pole,) = 1 et on considére la
dérivation f°° € Der (G ; A) définie par Ay f*(g) = g-eq — eq.
On a alors W([§,] + [&.1) = [f*].

3.14. LemMME. f* 4+ f — f®elnt(G;4).

Démonstration. Comme p(y(e; ; e,)—8(e)) = 0, il existe un élément a € 4
tel que AMa) = y(e;e,) — O(ey). Considérons la dérivation f, € Int (G ; A).
Pour tout g € G on a, compte tenu du diagramme (3.13.1),

Mfeg)+ f(g)— f(9)— fulg)) = 0.
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