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Donc ©'(m) est une dérivation de G dans ri. On vérifie immédiatement que

COCO — lDer(G;T) ^ qUC COCO •

2.6. On rappelle que h(G;A) désigne le groupe abélien des classes de

ri-conjugaison des sections de l'extension de groupes donnée par le produit
semi-direct ri x G.

Proposition. Il existe un isomorphisme de groupes abéliens

Der (G ; ri)
F:h(G;A) Int (G ; ri)

Démonstration. Il résulte de 1.9 qu'à toute section a : G A x G on

peut associer une application fa : G -> ri telle que, pour tout g e G, on a

a(g) (fa(g);g). Compte tenu de la loi de multiplication du produit semi-

direct et du fait que a est un morphisme de groupes, on vérifie que
/a e Der (G ; ri).

Si g' est une section ri-conjuguée à a, il existe un élément ae A tel que
&{g) i(a)cr(g)i(a)~1 ; on en déduit que {a + fM~9 -a', g) donc

que f„ - f& e Int (G ; A).
On définit alors l'application F en posant L([cr]) [/CT], où [/J désigne

1 1 j r j 1 •
Der (G; ri)

la classe de ja dans le groupe quotient Int (G ; ri)
Il est immédiat de vérifier que F est un morphisme de groupes et que F

est bijective.

3. Le groupe H1(G;A)

3.1. Soit G un groupe. Comme d'habitude on munit Z de sa structure de
ZG-module à gauche trivial. De plus soit ri un ZG-module à gauche; on
considère ri comme un ZG-bimodule en faisant agir G trivialement sur la
droite de ri.

On se propose de démontrer l'existence d'un isomorphisme de groupes
abéliens

^ Der (G ; ri)

Compte tenu de la définition des groupes H*(G ; A) et de la proposition 2.6,
on obtient alors le résultat classique suivant.
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3.2. Théorème. Il existe un isomorphisme de groupes abéliens

H\G ; A) h(G ; A).

3.3. Pour construire l'application <t> on commence par considérer l'extension
de ZG-modules

0:0 IG -ù ZG 4 Z -> 0.

o Der (G ; A)
Soit [/] g

j t (G A)
rePr^sent^e Par une dérivation / g Der (G ; A) ; d'après

la proposition 2.5 on peut associer à / un morphisme / co(/)
g HomZG(/G ; A).

En faisant le produit cofibré de 0 par / on obtient l'extension de

ZG-modules

/0:O -» A A F 4. Z - 0.

Le ZG-module F est le quotient de ZG x A par le sous-module engendré

par l'ensemble {(/(x); — /(x)) | x g IG}. Si 7t: ZG x A F est la projection
canonique, les morphismes a et ß sont définis en posant a(a) 7i(0;a)
et ß7i(x ; a) — g(x).

Si /' g Der (G ; T) est un autre représentant de [/] on lui associe de

la même façon l'extension de ZG-modules

/'0: 0 -* A ^ F' * Z 0

3.4. Lemme. Les extensions /0 et /'0 sont équivalentes.

Démonstration. Il faut construire un morphisme de ZG-modules Ô : F -> F'
tel que le diagramme

0 ^ 4 A F i Z ^ 0

1A I S | J, lz
D ^ A ^ F' -> Z -> 0

a' ß'

soit commutatif.
Par hypothèse il existe 6g4 tel que f — f fb où fbe Int (G ; T).
On définit alors un morphisme de ZG-modules

A : ZG x A —» ZG x ^4

en posant À(x ; a) (x;a — X'b).
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Si x e IG on peut écrire x £ ng(g — l) si bien qu'en utilisant la propo-
geG

sition 2.5 on a

x-bE ng(g'b-b) E ngfb(g) E
geG geG geG

Â(E "gig-1)) fbix)-
geG

On a donc A(x; —/(x)) m (x; — f(x) — fb(xj) (x; — /'(x)) et on définit 8

par la condition tc'A Src.

On vérifie immédiatement que 8a a' et ß'8 ß.

3.5. L'application > est alors donnée en posant <£>([/]) [/Ö]-

3.6. On construit maintenant une application

Der (G ; A)

Soit [^] eExtzG(Z;^4) représentée par une extension de ZG-modules

^:0-4iiÊAZ-^0.
Choisissons un élément e e E tel que p(e) 1 et considérons la dérivation

fe e Int (G ; E).

Comme on a p/e 0 on peut définir une application fe: G ^ A par
la condition ^/e /e.

3.7. Lemme. /e e Der (G ; ^4) et [/e] ne dépend pas du choix de e.

Démonstration. Pour tous g, h g G on a

^fe(gh) (gh) • e - e g • (h • e-e) + g-e - e

g -Xf%h) + Ve(0)

% • /•</,) + /%)).
Comme X est injectif il en résulte que fe e Der (G ; Soit e' e E tel que

H(e') 1 ; puisque p(e-e') 0 il existe tel que
Considérons la dérivation fb e Int (G ; A). Pour tout g e G on a

Kfe-fe')(g)(g-e-e) - (g-e'-e1)

g • Mb) -
X(g-b-b«5t/„(g).

Ainsi fe — fe e Int (G ; A) et par suite [/e] ne dépend pas du choix de e.
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3.8. Supposons maintenant que l'extension de ZG-modules

%':0 ->• AS*E ^Z0

est un autre représentant de [%].

En choisissant un élément e' e E tel que p'(e') 1 on définit une
dérivation fe' g Der (G ; A).

3.9. Lemme. /e - fe' g Int (G ; A).

Démonstration. Les extensions é, et étant équivalentes, il existe un
morphisme de ZG-modules y : E -> F tel que le diagramme

U 1 Y 1 Hz
0-+y4-t£'-fZ^0X,' m'

soit commutatif.
Comme \ï(y(e) — e') 0, il existe b e A tel que X'(b) y(é) — é.
Considérons la dérivation fb g Int (G ; A). Pour tout g g G on a

Y>-(./"-.r"l fe) ïVfe) - Vf<3)
yfe-e-e) - fe-e'-e')
0*(yfe)-e') - (ï(e)-e')

X'(g-b-b)
yhftig)

Comme y est un isomorphisme et X est injectif il en résulte que

fe — fe' g Int (G ; A).

3.10. On peut donc définir l'application en posant ^(K]) [/e], et il
faut vérifier que W est la réciproque de 0.

3.11. Lemme. Y® lDfsr (G ; A) •

Int (G ; A)

„ Der (G ; A)
Démonstration. Si [/] g j \[G' A) ^ rePresentee Par f G ^er

alors vFO([/]) *P([/0]) où /0 est l'extension de ZG-modules

o-.Gfiz-^o
décrite au n° 3.3.
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Par définition du produit cofibré de 0 par / il existe un morphisme

de ZG-modules y : ZG -> F,définipar y(x) n(x ; 0), tel que le diagramme

0 IG ^ ZG i Z -» 0

fi Y iIL0 -> d. -> FZ^ 0
a ß

soit commutatif.
L'élément e tc(1 ; 0) e F vérifie la condition ß(e) — 1; donc ^([/O])

est représentée par la dérivation fe e Der (G ; A) telle que, pour tout g e G,

on ait a/%) g • e — e n(g — 1 ; 0).

Or on a fe /; en effet, compte tenu de la proposition 2.5 on a,

pour tout g e G,

u{fe-f)(g) a/%) - a/% — 1)

a/%) - yfe-1)
t% — 1 ; 0) — 7% — 1 ; 0) 0

3.12. LEMME. <PVF — lExtzG(Z;T)*

Démonstration. Soit [^] g Ext iG(Z ; A) représentée par l'extension de

ZG-modules

et choisissons un élément e e E tel que p(e) — 1 ; on a alors Off'fK]) [/e9]-
Il s'agit donc de démontrer que les extensions £, et /e9 sont équivalentes ;

pour cela il faut construire un morphisme de ZG-modules ô : E F tel

que le diagramme

0 A E A Z ^ 0

% I S | | lz
0->,4^F-+Z-+0a ß

soit commutatif.
Si u e E on a p(w —p(w)c) 0; on peut donc définir un morphisme de

groupes abéliens u : E -> ^4 tel que Ev(u) u — |%)e pour tout u e E.
Définissons alors ô en posant ô(w) 7i(p(w) ; d(m)). Il faut vérifier que ô

est un morphisme de ZG-modules ; or si g e G et u e E on a

g • S(u) - 5(0 • m) rc(p(u) (g - 1) ; • u(w)-u(gr • u)).
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Mais

H 9•»(")- v(g •«)) g• (m -1 - |

- \y{u){g-e-e)

- H(w)^/%)

X(-\x{

Il en résulte que g • 5(w) — b(g • u) 0.

Finalement on vérifie immédiatement que bX a et ß8 p.

3.13. Il reste à montrer que l'application est un morphisme de groupes
abéliens.

Soit [y g Ext£G(Z ; A) {i 1, 2) représentée par l'extension de ZG-irodules

Ç,-:0 -> A h E, U Z -* 0.

On choisit un élément et g Et tel que pf(ef) 1 et on considère la

dérivation fei g Der (G ; A) définie par XJ^g) g • et — et.
On a alors ¥(KJ) + *F(R2]) [/-] + [/"] [/"+ /«*].
Maintenant [^] + [Ç2] est représentée par l'extension de ZG-modules

et on a Ie diagramme commutatif suivant

A © A
Ä-1 © 1.2 m © M2

E, © £2 - Z © Z ^ 0

V| Y i l lz©z

A
X

E - Z
M

© z -> 0

UT 8Î î A

A
Xo

E0 -u ^0
Z -> 0

On choisit un élément e0 g E0 tel que p0(co) 1 et on considère la
dérivation feo g Der (G ; A) définie par X0feo(g) g • e0 — e0.

On a alors + ß2]) - [/-].

3.14. Lemme. /ei + fe2 — /eo g Int (G ; ^4).

Démonstration. Comme p(y(c1 ; c2)~^(eo)) 0, il existe un élément ae A
tel que X(a) y(e1\e2) — ô(c0). Considérons la dérivation fa g Int (G ; A).

Pour tout g e G on a, compte tenu du diagramme (3.13.1),

Hfei(g)+fe2(g)-feo(g)-fa(gj)o.
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