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Proof. (i) This is an immediate consequence of a result of Steenrod in
[5, p. 56, §12.6]. In fact, from (6) and (8) in the proof of Theorem 3.1,
we easily see that the coordinate functions

¢4 : (@,\04) x (R\0) » 1™ '(@,\0%),
¢4 (@,\0) x (R\O) » n~ (®,\0)
of # &' can be defined respectively by
t, tB(A)
ct)’l()\‘a t) = ( ) 5
1+ NQR)
(B, )

J1T+ Nw

and that for any fixed element B € ®,\{O*, O}, the coordinate transformation
SLod) gin RMN\O is t —» ¢ = tB(A)/N(M)?, and thus it cooincides with
the action of an element of G, .

G5, ) =

(i) Obviously, " ! = R™ O is invariant under G, . Therefore, according
to a result of Steenrod [5, p. 24, 2nd paragraph], there is a unique
subbundle of .#.# with fiber "~ ! and the same coordinate neighborhoods
and coordinate transformations as .#.%,. Comparison will show that this
subbundle is precisely our .#,.

4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES

In the early 30’s, H. Hopf [2, 3], using complex numbers, quaternions,
and Cayley numbers, discovered his fiberings of $*"~! by S$"! over S,
n = 2,4, 8 Later in 1950, N. Steenrod [5, pp. 105-110] used these fiberings
of Hopf to construct three sphere bundles, which we here call the Hopf-
Steenrod bundles. But he did this in a roundabout way. For the two cases
n = 2,4, he obtained the bundles S — §? and §7 — S§* as special cases
of a general result on “sphere as a bundle over a projective space”. For
the case n = 8, he obtained the bundle S'° — S® as a subbundle of a linear
bundle which he constructed by using Cayley numbers. This being the case,
he did not need to define the coordinate functions for his bundles. Still
later in 1952, P.J. Hilton [1, pp. 52-55] showed, in a direct manner, that
the Hopf fiberings S**~* — S" n = 2,4, 8, are fiber spaces by exhibiting
some sets of coordinate functions. But he did not calculate the coordinate
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transformations or mention the bundle groups because they were not needed
for his purpose.

In this section, we first describe the fiberings of S*"~! by S"~! over
S", n = 2,4,8, as Hopf first discovered them, and then, using Hopf’s ideas
and method and taking into consideration the work of Steenrod and Hilton,
we give a unified and explicit formulation of the structures of the three
Hopf-Steenrod bundles §*"~' — S". In the next section, we shall show how
the Hopf-Steenrod bundles are related to the sphere bundles we constructed
in § 3.

Let Q,,n = 2,4, 8, be respectively the (hypercomplex) systems of complex
numbers, quaternions and Cayley numbers. (See Appendix 1 for properties of
Cayley numbers.) Suppose that I,,a = 0, 1,..,n — 1, are the base elements
in Q,. Then any element X of Q, can be uniquely expressed as

n—1
X = Za:Oxa+1 Ia,

where x,, .., X, are real numbers called the components of X. Furthermore,
let us define

| X | = (ZZ;;xa%JrJl/z

as the length of X. Then we can identify Q, with the Euclidean n-space
R" by taking the components (x,, .., x,) of an element X in Q, as the
rectangular coordinates of the point X in R".

Consider now the space Q, x Q, of ordered pairs (X, Y) of elements
of Q,, and let x = (x{, .., x,) and y = (x4, ., X5,) be the components
of X and Y. Then we can identify Q, x Q, with R*" by taking (x, y)
= (X{, s X} Xpt1» - Xz,) @S rectangular coordinates in R*". Calling (X, Y)
the Q,-coordinates in R?", we define a Q,-line in R®" as either the point set
X =0, or a set of all the points whose Q,-coordinates (X, Y) satisfy an
equation of the form Y = CX, where C is some element of Q,. We can easily
see that the Q,-lines are n-planes in R*" with the properties that through any
point in R*"\ 0, there passes one and only one such n-plane, and that any
two such n-planes intersect only at the origin of R*",

Suppose that S?"~ ! is the unit sphere | X |2 + | Y |? = 1 in R?". Then it
follows from the above that the great (n—1)-spheres in which S2"~! is
intersected by the Q,-lines are such that one and only one of them passes
through each point of S?*"~!, and so they form a fibering of S?"~! by
g

Closely associated with this fibering of S**~! is a map p from S§2"!
onto the n-sphere S”, defined as follows. First, we regard S" as R" closed
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by the point co at infinity, so that " = R* U oo = @, U . Then p sends
each point of S?"~! which lies on a Q,line Y = CX to the point
CeQ, c S", and sends each point of S*"~! which lies on the Q,-line
X = 0 to the point oo €S" In other words, the map p:S*"~ ' — §" is
defined by

Yx-' if X #0,

4D P, ¥) = {oo it X =0

where (X, Y) is any point of §"~ 1. It is easy to see that p is a continuous
map, and that the inverse image of each point of S” is one of the great
(n— 1)-spheres in which S*"~? is intersected by the Q,-lines.

The fibering $*"~! — §” by S"~ ! constructed above is then the famous
Hopf fibering, and the map p is the Hopf map related to it.

We now prove the following theorem which gives a unified and explicit
formulation of the three Hopf-Steenrod bundles $?" ! — S" n = 2,4, 8.

TuHEOREM 4.1. Let Q,, n = 2,4, 8, berespectively the systems of complex
numbers, quaternions and Cayley numbers, and let the spaces Q,, O, x O,
be identified with R", R” x R" = R?*", respectively. Then the set of Q,-lines
{X =0,Y = CX} in R slice the unit sphere S*"~' in R?® into a
fiber bundle

%yn — (S2n—1’ Sn’ D, Sn—I’ O(n))

with base space S" = Q, U oo, projection p, fiber S""' and group the
orthogonal group O(n).

Proof. We prove by exhibiting the ingredients of a representative
coordinate bundle.

(1) The bundle space S*"~! is the unit sphere | X |2+ |Y |2 = 1 in
R™ =0, x Q,.

(2) The base space S” is identified with R" U oo = 0, v oo. Therefore,
S" is covered by the two coordinate neighborhoods

Qs SN0 = (QU)\0 = (@\0) U o0,

with elements of Q, and co serving as coordinates.

(3) The projection p: §*"~* — §" is the Hopf map defined by (4.1).

(4) The fiber S"~ ' is the unit sphere | X | = 1in R" = Q.

(5) The group O(n) of the bundle acts on §" ! effectively.
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(6) Let C, D be elements of Q, such that | D| = 1, so that D represents
a point of $"~*. Then the two coordinate functions are the homeomorphisms

Vi:Q, x S - pTHQ,),
V21 (SMO0) x §*71 - pHS™O0),

defined respectively by

(D, CD)
4.2 C, D) = ’
(4.2) V,4(C, D) PATAE
(C™'D, D)
V,(C, D) = ., where C # oo,
J1+1/CP?
(4.3)

‘sz(ooa D) = (Oa D) .

That {, I, are indeed homeomorphisms is easy to verify.

(7) It can readily be seen from (4.1), (4.2) and (4.3) that the projection p
and the coordinate functions \, , \/, satisfy the conditions:

4 {@omuaD)=c,
' (poV,)(C,D)=C if C# o, and (poyy)(co,D) = .

(8) For each fixed point C in the intersection Q, n (S"\0O) = Q,\O of
the two coordinate neighborhoods in the base space S", let ; - and V,
be the two homeomorphisms $"~! — p~}C) = §*"~! defined by

\L’l,c(D) = \lfl(Ca D), Wz,c(D) = \|12(C, D) >

where \r;, Y, are the coordinate functions defined in (6). Then, we can

easily verify by using (4.2) and (4.3) that the coordinate transformation
V5 & oV cin the fiber S"~ 1 is

(4.5) D - CD/| C],

where D with | D| = 1 is a variable point of S"" ! < Q,. Now since the
components of the product CX of any two elements C, X of Q, are
bilinear functions of the components of C, X, the map X - CX/|C| is a
linear transformation in R" = @, . It is in fact an orthogonal transformation
because | CX/| C|| = | X |. Therefore, the coordinate transformation (4.5)
coincides with the action of an element of the group O(n).

(9) Finally, from the bilinearity of the product CX, it also follows that
the coordinate transformation (4.5) varies continuously with C. Therefore, the

i
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map from Q, N (S"\0) = Q,\0 — O(n) defined by C - Y5 ¢V, ¢ is con-
tinuous.
Thus, with the ingredients (1)-(9) exhibited above, we have constructed

a representative coordinate bundle of the bundle s# %, in the theorem.

REMARK. The coordinate functions {; and {, as given in (4.2) and (4.3)
were arrived at as follows. By definition, \; is a homeomorphism sending

(C,D)eQ, x 8" = (X, Y)ep HQ,) = 5.

Here, X and Y are not arbitrary functions of C, D, but must satisfy
certain conditions. First, they must satisfy (4.4),, so that (po\,) (C, D)
= p(X, Y) = C. Therefore, by (4.1) X and Y are related by

(4.6) Y = CX.

Secondly, since (X, Y) is a point of S*""' | X |*> + | Y |? = 1. Combining
this with (4.6), we get

(4.7) X2 =11+ C]Y.

Finally, since De $" ! < Q,,
(4.8) |ID| =1.

Conditions (4.6), (4.7) and (4.8) suggest that the simplest choice of V, is
(4.2). Similarly, we choose (4.3) as \, because of conditions (4.4), .
Similar to Theorem 4.1, we have

THEOREM 4.2. In R*, n = 2,4, or 8, the Q,lines slice R*\O into
a fiber bundle

S &L, = (R’™O0, S", p, 0,\0, GL(n, R))

with base space S" = Q, U o, projection p, fiber Q\O, and group the
general linear group GL(n, R).

Proof. The proof is similar to that of Theorem 4.1, but with the following
difference. The projection is the map p: R*"\O — S" defined by

YX™' if X #0

(4.9)
if X=0;
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and the two coordination functions

\l’l: Qn X (Qn\\O) - p_I(Qn) D

V51 (SMO) x (2,\0) = p~H(S™\0)
are defined respectively by
(4.10) V,(C, D) = (D, CD),

4.11) {%(C’ P)=(CD,D), where C# o,

\llz(ooa D) = (0> D) .

The coordinate transformations {5 ¢ ° V; ¢, where C € 0, n (S"™\O) = Q,\O,
are the linear maps D — CD in the fiber Q,\0.

The relationship between the bundles # &, and ¥.Z, is described in
the following theorem, the proof of which is similar to that of Theorem 3.3.

THEOREM 4.3.
(1) The bundle

S&L, = (R*™O0, S", p, 0,\0, GL(n, R))
is equivalent in GL(n, R) to the bundle
&, = (R*™0, S" p, 0,\0, O(n))

with group O(n).
(i) The bundle

HSF, = (S, 8 p, §" 1, O(n)
is a subbundle of the bundle S %,.

Let us now explain how the bundle #%, given in Theorem 4.1 is a
unified formulation of the sphere bundles S?"~! — S n = 2, 4, 8 constructed
by N. Steenrod using the Hopf fiberings, and how our construction incor-
porates the work of P. J. Hilton.

() Comparison of the ingredients of the sphere bundle # % ¢ in Theorem 4.1
with those of the fiber space S'° — S® of Hilton [1,p. 54] shows that
they have the same projection (4.1) and coordinate functions (4.2) and (4.3).

(b) Suppose that in the construction of the sphere bundle #.¥, in
Theorem 4.1, we use the “Q,-lines” X = CY instead of the Q,-lines Y = CX
in defining the projection p: S*"~! — S”". Then we can obtain another sphere
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bundle $2"~! — S" by using the ingredients of #°.%, but interchanging the
roles of X and Y, ie., by replacing

(i) the projection (4.1) by

Xy Xy ' if Y #O0,

and

(ii) the coordinate functions (4.2) and (4.3) by

4.2) Ui(C, D) = D)
’ 1 s - 1+|C|29
D,C™ D
¢2(C’D)=\/(T+1/{C)|2, where C # oo,
(4.3)

\IJZ(OO: D) = (D> 0) .

For n = 2, the X, Y, C. and D (with |D|=1) are all complex numbers.
On putting X = z,, Y = z,, C = p and D = ¢*, we can see immediately
that the projection (4.1) and the coordinate functions (4.2") and (4.3") are
exactly those used by Hilton [1,p. 51] to prove that the Hopf fibering
S — S? has a fiber space structure.

(c) Suppose that in the construction of the linear bundle &%, in
Theorem 4.2, we use the “Q,-lines” X = CY instead of the Q,-lines ¥ = CX
in defining the projection p: R**\O — S™. Then we can obtain another linear
bundle by using the ingredients of ¥.%¥,, but interchanging the roles of X
and Y, i.e., by replacing

(1) the projection (4.9) by

XY™ ! if Y=#0,

(4.9) p(X,Y) = { o gy -

b

and

(i1) the coordinate functions (4.10) and (4.11) by

(4.10) V(C, D) = (CD, D),
(4.11") {\l’,Z(C: D) = (D,C'D), where C # oo,
Vy(c0, D) = (D, 0).

o
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For n =38, the X,Y,C and D are Cayley numbers. On putting
X =¢ Y=4d, C=x and D =y, we can see immediately that the
projection (4.9) and the coordinate functions (4.10") and (4.11") are exactly
those of the linear bundle 4 constructed by N. Steenrod in [5, pp. 109-110].
Therefore, this linear bundle % of Steenrod and the linear bundle &% in
Theorem 4.2 are two slightly different representations of the same bundle.

5. COMPARISON OF OUR BUNDLES WITH THE HOPF-STEENROD BUNDLES

In § 3, we constructed the sphere bundles
g, =ES*""Lo,ns" G,), n=24238,

with fibers lying on mutually isoclinic n-planes in R*". In §4, we gave a
unified treatment of the classical Hopf-Steenrod sphere bundles

HSL, = (S8 p, "L 0m), n=2438,

using, as N. Steenrod did, the Hopf map and the hypercomplex systems of
complex numbers, quaternions and Cayley numbers. In this section we shall
prove that (i) the Hopf fibering S*"~* — §” and our maximal set of mutually
isoclinic n-planes in R?" are equivalent concepts (Theorems 5.1 and 5.2),
and (ii) the representative coordinate bundles constructed in §3 and §4
for the bundles .4, and #%, are topologically essentially the same
(Theorem 5.3). For convenience, the theorems will be stated and proofs
given for the case n = 8 only. Similar theorems hold for the cases
n = 2,4, and their proofs follow the same line and are simpler.

THEOREM 5.1. For n = 8, let us identify the space Qg of Cayley
numbers with R® by regarding the Cayley number
X = (xl +xZi+X3]+x4k 5 x5+x6i+x'7]+x8k)

as the point in R® with rectangular coordinates (X, .., Xg), and the space
Qs X Qg of ordered pairs of Cayley numbers with R® x R® = R'® by
regarding the ordered pair
(X, Y) = ((cy + x50+ Xaj + X4k , X5+ X6i+ X7+ Xxgk),
(Xo+ X0l + X1+ X12Kk, X153+ X140+ X1 5f+ X1 6k))
as the point in R with rectangular coordinates (Xy,..,Xg;Xg, -y X16).
Then, written in terms of x = [x; .. xg] and y = [Xg .. X16],
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