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Therefore, f(¥,) is the set ®, of mutually isoclinic n-planes in our
Theorem 1.6.

2. SOME FURTHER RESULTS

From now on we shall confine our attention to n-dimensional maximal
sets of mutually isoclinic n-planes in R?", and therefore, n has always the
values 2, 4, or 8 unless stated otherwise.

In this section, we prove a few more theorems for use in § 3. In these
theorems, the indices a, b have the range of values (0, 1,..,n—1); B, = [
is the identity matrix of order n; By, .., B,_, are the n x n matrices listed
in Theorems 1.5 and 1.6; A = (A,) i1s an ordered set of n real parameters;
and

BM =Y %B,, NO)=Y 2.

Moreover, for any matrix M, we denote its transpose by M.

THEOREM 2.1.

i) BMANBMT = NWI.

) If A#0, then

B(\M)~! = BW)T/N() Z ABI/N(),

so that if A # 0, the equation y = xB(\) is equivalent to the equation
x = yB(W', where p = A/N(\) # 0.

(ii1) det B(A) = + (N(V)"?.

(tv) If N() =1, then B(A)eSO(n), where SO(n) is the set of all
orthogonal matrices of order n and determinant + 1.

Proof.  B(M)B = (3 MB.) ) O, MBj) = MMBB]

= Y A2B,BT + Y )BT +B,BT),

which, on account of the Hurwitz matrix equations (1.2), is equal to

Z A2 = N(MI. This proves (i), and also (i1). To prove (iii), we first note
that since B(A) is a square matrix of order n, det B(A) is a homogeneous
polynomial of degree n in the A,’s, and it follows from (1) that

(det B(W)? = det (BWBMWT) = (N(A)".
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Therefore,

(2.1) det B(A) = + (NOV)"? = + AWE+Ai+...+22_ )2
= + (A§ -+ other product terms in A,) .

On the other hand, since B, = I, and By, .., B,_; are all skew-symmetric
matrices, the diagonal elements of B(A) are all equal to A,, and none
of the other elements of B(A) is equal to A,. Therefore,

det B(A) = A} + other product terms in A, .
Comparison of this with (2.1) gives (iii). Finally, (iv) follows immediately

from (i) and (i11).

Returning to Theorems 1.2 and 1.6, we now prove

THEOREM 2.2. Let ®, be the maximal set of mutually isoclinic n-planes
in R?" described in Theorem 1.6, and let (u,v) be any vector in R*"
If u +# 0, then the unique n-plane in ®, containing (u,v) is

(2.2) y = x[oul —(wB,u")B, —..—(wB,_ u")B,_]/(uu)T .
If v # 0, then the unique n-plane in ®, containing (u,v) is
(2.3) x = y[uwT —uBTv")BT —..—uBI_ v)BI J/wv)".

Here, By, .., B,_, are the matrices in (1.3), (1.4), or (1.5) according as
n=24 or &

Proof. We shall prove only (2.2) for the case u # 0, as (2.3) for the
case v # 0 can be proved similarly. Suppose that u # 0 and

(2.4) y = x(ho+hBi+..+A, 1B, 1)
is an n-plane in ®, containing (u, v). Then we have
v =uo+ABi+..+A_1B,4),

which can be written as

v = [MAs oo Ayi] uB,

L UB,,_l —J
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Multiplying the two sides of this equation on the right by
[uf, —Byu’, .., —B,_u"]
and making use of the Hurwitz matrix equations (1.2), we get
o[u?, =Byu”, .., —B,_1u"] = [Aohq o Ay 1] (@u)I .

Since uu® # 0, the above equation determines the A,’s uniquely in terms
of u, . Now with these values of A,’s, equation (2.4) becomes equation (2.2),
as we wanted to prove. Incidentally, the above proof also confirms that there
is exactly one n-plane in ®, containing the vector (u, v) (cf. Theorem 1.2).

Next, we give a direct proof of Theorem 1.3 for the special cases
n = 2,4, 8, and state the result as

THEOREM 2.3. The maximal set ®, = {x = 0,y = xB(\)} of mutually
isoclinic n-planes in R*", n = 2,4, or 8, can be given a differentiable
structure so that it is diffeomorphic with the n-sphere S".

Proof. Let us regard @, as a point set whose elements are the n-planes
in ®,. Then, the subset ®,\O' = {y = xB(A)} of @, is an open subset
in which we can define a coordinate system by assigning to the element
y = xB(A) the coordinate A = (Ag, Ay, .., A,—). The subset ®,\O = {x = 0
and y = xB()A), where L # 0} of @, is also an open subset. By Theorem 2.1 (ii),
this subset is the same as the subset {x = yB(w)"}, and so, we can define
in it a coordinate system by assigning to the element x = yB(W)? the

coordinate p = (Wg, My, -y My— 1) Thus @, is covered by the two coordinate
neighborhoods

(2.5) (@\0% 1),  (2,\0, ).

Moreover, we can see from Theorem 2.1 (ii) that for any element in

(@,\0%) N (®,\0) = ®,\{0*, O}, its two coordinates A, p, both nonzero, are
related by

(2.6) = A/N(MA), or equivalently, . = p/N(n).

Hence, @, is an n-dimensional manifold.
To show that ®, is diffeomorphic with the n-sphere S, we view S"
as the unit sphere x{ + .. + x2,; =1 in R"*!, and use stereographic

projections. Let ¢,(0, .., 0, 1) and g,(0,..,0, —1) be respectively the north
and south poles of S". Then S" is the union of the two open subsets
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S"\q; and S™\g,. For an arbitrary point ¢ in S"\q,, let the line g,q meet
the equator n-plane x,,, = 0 at the point (A, 0); and for an arbitrary point ¢
in S"\q,, let the line ¢,q meet the equator n-plane x,,, = 0 at the point
(1, 0). Then S” is covered by the two coordinate neighborhoods

(2.7) (S"™\g1, M),  (S"\q2, 1.

Moreover, it is easy to verify that for a point in S™\{q;, q,}, its two
coordinates A and p are also both nonzero and related by (2.6).

It now follows from (2.5), (2.6) and (2.7) that if f; is the map from
®,\O* to S"\q, sending an n-plane in ®,\O* with coordinate A to the point
in S"\q, with the same coordinate A, and f, is the map from ®,\O to
S™\q, sending an n-plane in ®,\O with coordinate p to the point in S"\g,
with the same coordinate p, then f,, f, combined will give a difftomorphism
from @, to S”. ‘

In the: remainder of this section, we are concerned exclusively with the
matrices B(A) with N(A) = 1. For convenience, we shall denote such matrices
by B(A'), with the understanding that A’ always satisfies the condition
N(O\) = 1.

We know from Theorem 2.1 (iv) that every B(A') belongs to SO(n).
Let us now regard SO(n) as the special orthogonal group. Then the set
of elements B(A') of SO(n) will generate a subgroup of SO(n). We wish to
know what this subgroup of SO(n) is, and the next three theorems will
give us the answer.

THEOREM 2.4. For n = 2, the set of elements B(\) forms the group
SO(2) which is isomorphic with S*.

Proof. Since

}”0 )\‘1
BO\V) = and  det BW') = ()P + WP =1,
A1 A

the elements of SO(2) are the elements B(A') themselves.

THEOREM 2.5. For n = 4, the set of elements B(\') forms a 3-parameter-
subgroup of SO(4), isomorphic with S>.
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Proof. First, since N(\') = (Ap)? + ... + (A5)* = 1, the set B(\'), with a
natural topology, is homeomorphic with the unit 3-sphere S3 in R* Next,
using (1.4), we can easily verify that

B,By = —B;, BB, = —B,, BB, = —B;.

With this and Theorem 2.1 (ii), straight forward computation will show
that for any two elements B(A') and B(y') of SO(4), the product B(A)B(w)~*
is an element of SO(4) of the form B(V'), where the components of V' are
analytic functions of the components of A" and p'. This proves our theorem.

For the case n = 8§, we first observe that the elements B(A) of SO(§)
do not, by themselves, form a subgroup of SO(8). For example, although
B,, B, are both of the form B(L'), their product B,B, is not. In fact, we
have

THEOREM 2.6. For n = 8, the set of elements B(A) of SO(8) gene-
rates the group SO(8) itself.

Proof. Our proof consists of two steps (i) and (ii). In (i), we prove
that the 28 skew-symmetric 8 x 8 matrices B;, B;B;(i,j=1, .., 7, and i<j)
are linearly independent. In (ii), we prove that the Lie algebra of the subgroup
of SO(8) generated by the elements B(L') coincides with the Lie algebra
o(8) of SO(8). The assertion in our theorem then follows from the well-
known fact in Lie groups that there is a one-one correspondence between
the connected Lie subgroups of a Lie group G and the Lie subalgebras of
the Lie algebra of G.

() From (1.5), we see that the 8x8 matrices B;(i=1,..,7) can be
partitioned as
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1 J

where

1 O 0 1 1 0 0 1
I: = = =
[O 1]’ / [—1 O:}’ K [0 —l]’ L [:1 O]’

are 2 x 2 submatrices and each empty space represents a 2 x 2 zero-matrix O.
Since the matrices I, J, K, L have the properties

=1, J*=-I, K*=1, L*=1,
JK = -KJ=-L, KL= -LK=J, LJ=—-JL=-K,

we can easily verify that the products B; B;(i,j=1, .., 7, and i<j) are matrices
of the same form as B;, having some of O, +I, +J, +K, +L as
2 x 2 submatrices.

To prove that the 28 matrices B;, B;B; are linearly independent, we
construct the 8 x 8§ matrix

M = ZiOLiBi + Z o;;(B; B;) ,

1<j

where the o’s are some real numbers, and show that if M = 0, then all
the o’s are zero. Let M = [ M, ], where M, (h, k=1, 2, 3, 4) are the 2 x 2 sub-
matrices of M. Then by using the explicit forms of B; and B;B;, we can
write M as the sum of the following four matrices:

M;, J -J
M, J -J
Ms; J J
My, -J -J

+ Oys + Qg7 y I
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M, K K
K —K
= 0 + 03
M, 1 T
My, -7 1
B L ] B —L N
—L L
+ O3 J + Oz J
L J _ L J _J
— -7 — — -7 —
I I
+ Olye -K + 05y K
L K _ | -K ]
- - T
—-J
+ Oy 7 + Usg d I
| £ _ u L
1\413 i K 7 — K —
M. ~1
2 = 04 + Ois 4
My - 7 ] o —7 B
+ Qs _7 + Oyg I
L — _ - —J B
- K
+ Oy 7 + 037 7 K
L K | L -K B
i Jo7 T ~J 7
£ | N L
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M, B I -1
M;; . K Y K
M, o K v ~-K
7m L —7 I
- J J
L —L
+ O~ _I + U4 I
_J J
— K
—1 -1
+ Oy I + Q35 ]
K - K
—L - L
—-J J
+ Qs _J + O3y 7 .
L L

Now, M = 0 means that all its submatrices M, are zero. Since
I, J, K, L are linearly independent, the equations M, = 0 are equivalent
to a number of linear equations in the o’s, and from these linear equations
we can easily see that the o’s must all be zero. For example, it is obvious
from the equations

M, = (0 +03)K + (03— ,)L — (g +0s7)] — (0ty7—0s6)] = 0,
My, = (g —0oy3)] + (03 +0y) + (—oge+0s7)K — (d47+0s6)L = 0
that
Oy,  Oyz, Oz, gy, Ogg, QAsy, Qygy, Osg
must all be zero. Thus we have proved that the 28 matrices B;, B;B;

are linearly independent.

(ii)) Let G be the Lie subgroup of SO(8) generated by the elements
B()\), and g its Lie algebra. Then g is-a Lie subalgebra of the Lie algebra
0(8) of SO(8). We now prove that in fact g = 0(8).

From the theory of Lie groups:-we know that if t —» f(t), where t e R
and f(t)e G, is any curve .in ‘G passing through the identity element
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[ = f(0) of G, then the velocity vector f'(0) of this curve at I is an
element of g. Now

t > fi(t) = (cos I + (sin B, (i=1,..,7)

are obviously curves in G such that £;(0) = I and f;(0) = B;. Therefore,
B; are all elements of g.

Since g is a Lie subalgebra of o(8) and B; € g, the Lie products [B;, B;]
= B;B; — B;B; = 2B;B;, where i,j = 1,..,7,and i < j, are all in g.

We have thus proved that the 28 linearly independent skew-symmetric
matrices, B;, B; B; all belong to g = o(8). Since o(8) is the Lie algebra of all
skew-symmetric matrices of order 8 and is therefore of dimension 28,

g coincides with o(8). This completes the proof of Theorem 2.6.

3. THE SPHERE BUNDLES S*" ! - @, , n = 2,4, OR 8,
WITH FIBERS ON MUTUALLY ISOCLINIC n-PLANES IN R?"

In R* n = 2,4, or 8, provided with rectangular coordinate system
(x,y), let S*"~1 be the unit sphere and @, the maximal set of mutually
isoclinic n-planes {x = 0, y = xB(A\)} defined in Theorem 1.6. Then with
the preparations we have made in § 2, we can now prove

THEOREM 3.1. In R*, n = 2,4, or 8, the n-planes in the maximal set

D, of mutually isoclinic n-planes slice the unit sphere S*"~' into a fiber
bundle

fn = (SZTI—I’(DH,T[, Sn_l’ Gn)’
with base space ®,, projection m, fiber S""' and group G,, where
Gz = Sl, G4 = S3, and Gg = SO(8).

Proof. We prove by exhibiting all the ingredients of a representative
coordinate bundle.

(1) The bundle space S*"~! has the equation xx” + yy” = 1in R?"

(2) The base space @, is covered by the two coordinate systems
(2.5) (@,\0% %), (@,\0, p)

as in the proof of Theorem 2.3, where O+ is the n-plane x = 0, O is
the n-plane y = 0, A is the parameter in the equation y = xB(A) of an
n-plane in ®,\O%, and p is the parameter in the equation x — yB(w)* of
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