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analogue for symmetric spaces, but see [9] for an example); there is a very
thorough account of this approach in [29].

I would like to thank Suren Fernando for some very helpful conversations.

§ 1. Notation and Preliminaries

Except in § 2, G will always denote a compact connected Lie group of
rank /; usually we will assume also that G is simple and simply-connected.
Fix once and for all a maximal torus T in G, and let N denote the

normalizer NGT. The Weyl group W is N/T. Lie algebras are denoted

as usual by Gothic letter: g, t, etc. To each G we can associate a reductive

complex algebraic group Gc—the complexification of G—with Lie algebra

9c 9 ® C. It contains G as a maximal compact subgroup, and as the

fixed group of an anti-complex involution. In fact G -+ Gc defines an
equivalence of categories (compact Lie groups) (reductive complex algebraic
groups).

Gc has a Borel subgroup (maximal connected solvable subgroup) B,

unique up to conjugacy, which we can assume contains the Cartan subgroup
(maximal algebraic torus) Tc. There is a split extension U -» B -> Tc where

U is the unipotent radical of B. There is also an opposite Borel subgroup
B~ such that B n B~ Tc; it fits into a similar split extension U~ -> B~
— Tc. On the Lie algebra level we have gc tc 0 u © u~, with u © u~

being precisely the sum of the nontrivial eigenspaces for the adjoint action
of tc on gc. The corresponding eigenfunctions X : tc -> C map t into zR ;

as is customary we replace each X by a — X/2ni to obtain a set <D of
nontrivial R-valued linear functionals on t-the real roots. These form a

(reduced, crystallographic) root system in t*. The positive roots ®+ correspond
to u, the negative roots <X>~ to u~. A simple system of roots a1,..., az (here we

assume G is semisimple of rank I) is then uniquely determined as the set

of positive roots which are not decomposable as sums of positive roots. If we

assume G is simple, so that O is irreducible, there is a unique "highest
root" a0, which is characterized by the property that for every positive
root a, a0 + a is not a root. The corresponding eigenspace in u is precisely
the center of u. And, speaking of eigenspaces, let Xa denote the eigenspace

(or "root subalgebra") of gc associated to a e ®. For each a, the subalgebra
of gc generated by Xa and X_a is isomorphic to sl(2, C). The corresponding
subgroup, isomorphic to SL2C or PSL2C, is Gc a. Choosing generators
Ea for the Xa, we obtain a basis for gc, consisting of the £a(ae<I>) and

A, [£„, (ae<D+).
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The basis above can be chosen so that the antilinear map gc -> gc

defined by Ea -+ - £_a is a Lie algebra automorphism with fixed algebra g.

In particular, then, we have g t ® (©ae®+^a)> where 7a is spanned by

Ea - E_a and i(Ea + E_a). The Ya are "eigenspaces" for the adjoint action

of t on g. Each Ya generates a Lie algebra isomorphic to su(2). The

corresponding subgroups Ga, isomorphic to S 1/(2) or SO(3), are extremely

important; for example, they generate G (if G is semisimple). Note Ga is a

maximal compact subgroup of Gc a.
In t there are three lattices: the coroot lattice R, spanned by the

coroots av 2a/a • a (t is identified with t* via a PF-invariant inner

product), the integral lattice I Ker (exp: t-»T), and the coweight lattice
J {X g t: a(x) g Z V a g <X>}. We have R ^ I ^ J, with I/R n±G and

J/I C(G). If we think of R as a group of isometries (translation) of t,
then R is normalized by W ; the affine Weyl group W is the semidirect

product RW. Next, consider the Stiefel diagram, which consists of the

hyperplanes Pa n {X g t : a(x) n} (ocg®, wgZ). The connected components
of the complement of the diagram are the alcoves, and we have :

(1.1) Theorem, (a) W acts simply transitively on the alcoves; (b) W
is generated by the reflections in the walls of any fixed alcove.

Now let be the positive Weyl chamber: {X et: a(x) > OVocg® + }.
Assume (for convenience) that G is simple. Then as our standard alcove we
take sY+ {X ec£+ : a0(J*0 < 1}. The closure À of is an /-simplex—the
Cartan simplex; its walls are the hyperplanes ai 0(1 <z^/), a0 1. The
wall a0 1 will be called the outer wall Thus W is generated by the set
S S u {s0}> where s0 is reflection in the outer wall. For each subset
I of S the I-face Aj of A is defined by Aj {X g A : af(x) 0 if
ie /, i # 0, a0(x) 1 if 0 g /}. (Here S - {s0, -, 5Z} {0, 1, ••• /}). We let
À7 denote the interior of Af, so that A is the disjoint union of the
À7. The isotropy group in W of any X e Aj is precisely Wj (the subgroup
generated by I).

(1.2) Theorem. Suppose X, Y g A and gX Y for some a g W.
Then X Y and a g fT7, where I {seS:sX AT}.

The most important feature of A, for our purposes, is the following:

(1.3) Theorem. Every element of G is conjugate to exp X for some
X g A. If G is simply-connected, X is unique.

[The proof of this classical theorem is easily obtained from what we
have stated so far, together with the conjugacy of maximal tori and the
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fact that two elements of T conjugate in G are conjugate by an element
of Wl

The first part of (1.3) asserts that the map G/T x À A G given by
n(gT, X) g exp X g~x is surjective. Thus G is a quotient space G/T x A/~
for a certain equivalence relation If G is simply-connected, the second

part asserts that the equivalence relation is given by {gxT,X^) ~ (g2T,X2)
if and only if Xt X2 X (say), and g1 g2 mod CG exp X. Now
Cg exp X({Y g g: (exp X) • Y T}) is easily determined (we write g • X for
(Adg)(X)): Cg exp X (®aWeZf«) 0 t, and furthermore {oc g ® : a(X) g Z}
is generated by the simple roots it contains—provided that — a0) is counted
as a simple root. (Of course for X g à, a(x) g Z means a(x) 0, ± 1). In
other words, if X g Â7, the identity component of CG exp X is the (closed)

subgroup Gj generated by T and the Ga., i g I. We recall here that although
centralizers of tori are always connected, centralizers of elements need not be.

Fortunately, however, there is the following result.

(1.4) Theorem (Borel [2], Bott [unpublished]). If © is an automorphism

of a simply-connected compact Lie group G, the fixed group of © is

connected.

In particular centralizers are connected in this case, so CG exp X GI.
We summarize the preceeding discussion in the next theorem.

(1.5) Theorem. Let G be a simple, simply-connected compact Lie group,
regarded as a quotient space of G/T x À as above. Then the equivalence
relation on G/T x À is given by (gxT, X) ~ (g2T,X) if X e k1 and

g1 g2 mod Gj.

We turn next to symmetric spaces. Let a be an involution of a semi-

simple G with fixed group K, and let K' be any subgroup of K containing
the identity component. For our purposes a symmetric space is by definition
a space of the form G/K'. However we will consider exclusively simply-
connected symmetric spaces; in that case K' is necessarily connected. Lifting
a to an involution a of the universal cover G of G, we see that

G/K' G/K", where K" is the fixed group of a. Hence we may assume

without loss of generality that G itself is simply-connected, and in that case

the Borel-Bott theorem guarantees that K is connected. The induced
involution on g will also be denoted by a. We have g k © m, where m
is the (—l)-eigenspace of a. Let M exp m. Then:
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(1.6) Theorem. The map rj : G/K -> M given by r[(gk) — go(g x) is a

K-equivariant homeomorphism. (K acts on M by conjugation.)

From now on we identify G/K with M. Let tm be a maximal abelian

subspace of m (any two such are K-conjugate); we can assume tm c= t.

The torus Tm exp tm is a maximal torus of M (or of G/K). The relative

Weyl group WG,K is NKtJCKtm; as in the absolute case, it is a finite

group.
Now the involution a on g (resp. G) extends uniquely to an anti-

complex involution on gc (resp. Gc). Passing to fixed points, we obtain the

associated real forms GR (GC)CT (not to be confused with (Ga)c!) and

gR (gc)a. Gr is semisimple real Lie group, containing K as a maximal

compact, and will play an important role.

Up to conjugacy, we can assume that a is in "normal form": a preserves

tc, and commutes with the "compact" involution of gc (the involution with
fixed algebra g). With this assumption, we now consider the associated

relative root system. Since a is antilinear, its action on is given by

(ctA,) (x) X(ax). This action permutes the complex roots, and yields an
involution on the real roots ® : (aa) (x) — a(ax). Let ®0 denote the

set of roots which restrict to zero on tm; and let W0 denote the associated

Weyl group (note ®0 is spanned by the simple roots it contains; W0 is

the subgroup generated by the corresponding simple reflections). The relative

root system £ is the set of nonzero linear functionals ß on tm which are
restrictions of roots a e <X>. One can show that £ is indeed a root system,
although it is not necessarily reduced—i.e., there may be roots ß such that
2ß is also a root. The following result is due to Satake [31] :

(1.7) Theorem. There is a base B (simple system of roots) for <P

such that if ® + is the corresponding set of positive roots, a preserves
® +

— ®0. Furthermore any such base satisfies (a) B n <D0 is a base for
#o and (b) For each aeB — ®0, there is a unique a' e B — ®0
such that aa a' mod Z<X>.

Using this theorem, the Satake diagram of G/K can be described as
follows. Start with the Dynkin diagram of G; its nodes are labelled by the
simple roots of <h (or by the set S). Color the nodes belonging to ®0
black and color the remaining nodes white. By part (b) there is an
involution (possibly trivial) on the set of white nodes; this is indicated by
drawing double arrows between the nodes of each nontrivial orbit. Six
examples are given in §6; see [13], pp. 532-4 for a list of all possible
Satake diagrams. To capture all of the structure of G/K another diagram
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is needed, which we will call the Dynkin Diagram of G/K. First define
the multiplicity mß of a root ß in S to be the number of roots in <D

which restrict to ß. Then the Dynkin diagram of G/K is the Dynkin
diagram of X with the nodes labelled by their multiplicities; if ß is a

simple root such that 2ß is also a root, the ß-node is to be labelled by
(mß, m2ß). Again, see § 6 for examples; for the moment we just mention an
extreme case : If G/K has maximal rank—i.e. tm t—then GR is the so-called

split real form of Gc. The nodes of the Satake diagram are then all white,
with trivial involution, <D X and ma 1 for all a. For example, take
G SU(n\ a(A) Ä, K SO(n) and GR SL(n, R). (The opposite extreme
—all nodes on the Satake diagram black—corresponds to the compact
involution on Gc (so a |

G 1), and will be ignored.)

For our purposes it is necessary to consider the extended Satake and

Dynkin diagrams. We recall here that the extended Dynkin diagram of an
irreducible (reduced) root system is obtained formally by considering — a0

as a simple root and adjoining a corresponding node to the ordinary
Dynkin diagram. (For us this definition is motivated by loop groups (§ 3),

but it has many other uses—for example, in the Borel-de Siebenthal
classification of maximal rank subgroups of G [3]). Now in view of (1.7)

it is clear that <j0 restricts to the highest root of X, and so in particular
restricts non-trivially. Hence the extended Satake diagram is obtained by
coloring the — a0)-node white (and leaving it fixed under the involution,
for reasons which should become clear later). The extended Dynkin diagram
for G/K is obtained from the ordinary one by adjoining — a0 and labelling
it by its multiplicity (2a0 is never a root).

Next, we will need the analogues of the subgroups Gc a and Ga in the

real form GR. Let ß be a simple root in X, and let Jß be the subset of S

determined as follows (cf. [22], pp. 135-36): In the Satake diagram form the

subdiagram consisting of the black nodes and the set of white nodes that
correspond to ß under restriction (there are either one or two such white

nodes). Then, in this subdiagram, take the path component that contains the

white node(s) (even when there are two white nodes, they lie in one

component). The nodes of the diagram obtained define the set /ß of simple
roots in <F. The subgroup G/ß of G is preserved by a, as is its commutator
subgroup Gjp, and the fixed group Kß — (Gjß)CT is the desired analogue of
Ga. Similarly, GR ß

is the cr-fixed group in (Gc)/ß. Note that we have

selected a sub—Satake diagram corresponding to the rank one symmetric

space GJß/Kß.
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Examples. In the split case, identifying <X> with E, we have G/p

Gß SU(2) and Kß SO(2) for all ß. For the usual involution on

SU(2n) with K Sp(n), the subdiagrams obtained all have the form

# o • SO GIp 51/(4) and Kß Sp(2) for all ß (§ 6.1).

If ß0 is the highest root of E, Kßo, (G0)ßo are similarly defined, using the

extended Satake diagram.
Lattices are defined exactly as before, using tm, Tm and E in place of

if T, <D. The coroot, integral, and coweight lattices for M will be denoted

Rm, Im, Jm, respectively. In fact, in each case the lattice for M is obtained

by simply intersecting the corresponding lattice for G (in t) with tm. The

definition of the affine Weyl group WGtK, the Stiefel diagram, alcoves,

Cartan simplex Am etc. are exactly as above—indeed these depend only
on the root system E. In fact Am A n tm. Theorems (1.3) and (1.5) also

go through in the following form, for example.

(1.8) Theorem. Let G be a simple compact Lie group with involution a
and fixed group K as above. Then every element of M is K-conjugate
to an element of the form exp I,IeAm. If G/K is simply-connected,

X is unique.

To state the analogue of (1.5), we need to determine CK exp X for
Xe(ÂJ,. Here / is a subset of SR—the set of simple roots of E. Clearly
CK exp X (CG exp)CT. It follows easily that CK exp X (Gr)a, where T
is obtained from I in the obvious way: In the extended Satake diagram,
L corresponds to the black nodes together with all the white nodes that
"restrict" to the nodes of I. (For example, if I is the empty set—i.e.,
X lies in the interior of the Cartan simplex Am — T corresponds to the
black nodes and CK exp X (Gr)a CKtm). Let Kj (Gr)CT.

(1.9) Theorem. Let G, a, K, be as in (1.8), with G/K M simply-
connected, and regard M as a quotient space of KjCKtm x Am via the map
(,kCKTm, X) k exp X k_1. Then the equivalence relation on K/CKtm x Am
is given by (k1, X) ~ (k2, X) if X e (ÀJ7 and fcx k2 mod Kj.

The final volley in our barrage of notation has to do with Weyl groups.
If (W, S) is any Coxeter system, and I is a subset of S, Wj is the
subcoxeter system generated by I. Each coset wWj has a unique element X
of minimal length, and l(xy) l(x) + l(y) for all y e Wj_ (l(w) is the length
of w as a word in the elements of S). We let W1 denote the set of such
minimal length elements. We also recall that W1 has a partial order—the
Bruhat order—defined by setting x ^ y if y has a reduced decomposition
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y si sk(sieS) an<i x has a reduced decomposition obtained by deleting
some subset of the sf's occuring in y. (For a very nice account of these

related matters, see [14]). If W is finite, W has a unique element w0

of maximal length, we define the length of W to be l(w0).

§ 2. Topological Buildings

A Tits system (G,B,N,S) consists of a group G, subgroups B and N,
and a set S, which satisfy the following axioms :

(2.1) B n N is normal in N, and 5 is a set of involutions generating
~ W N/B n N,

(2.2) B and A generate G,

(2.3) If s e S, sBs ^ b,

(2.4) if s e S, w e W, then s£w ^ BwB u BswB.

(The use of expressions such as sBw is a standard abuse of notation).

Example. Let G be a reductive algebraic group over an algebraically
closed field (e.g., GL(n, C)), let B be a Borel subgroup (e.g. upper triangular
matrices), and let N be the normalizer of a maximal torus (that lies in B).

This data determines a set S of simple reflections generating the Weyl

group W (e.g., the usual generators s1,..., sn _ x of SJ. Then one of the main
results in the structure theory of reductive groups is that (G, £, N, S) is a

Tits system (see for example [15]).

Throughout this paper we will assume that the set S is finite; its

cardinality I is the rank of the system.
We next list some of the important properties of a Tits system.

(2.5) (Bruhat Decomposition) G =11weWBwB (disjoint union),

(2.6) (W, S) is a Coxeter system.

A subgroup P of G is parabolic if it contains a conjugate of B. In
particular if I £ S, the subgroup Pj generated by B and I is parabolic.

(2.7) (a) The parabolic subgroups containing B are precisely the P7, / c S.

No two of these are conjugate; in particular there are exactly 2l such

subgroups, which form a lattice isomorphic to the lattice of subsets of S.

(b) Pj BWjB

(c) Every parabolic P is self-normalizing : NGP P.
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