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128 S. A. MITCHELL

analogue for symmetric spaces, but see [9] for an example); there is a very
thorough account of this approach in [29].
I would like to thank Suren Fernando for some very helpful conversations.

§ 1. NOTATION AND PRELIMINARIES

Except in §2, G will always denote a compact connected Lie group of
rank [; usually we will assume also that G is simple and simply-connected.
Fix once and for all a maximal torus T in G, and let N denote the
normalizer Ng;T. The Weyl group W is N/T. Lie algebras are denoted
as usual by Gothic letter: g, t, etc. To each G we can associate a reductive
complex algebraic group G—the complexification of G—with Lie algebra
gc = g ® C. It contains G as a maximal compact subgroup, and as the
fixed group of an anti-complex involution. In fact G — G defines an equi-
valence of categories (compact Lie groups) <> (reductive complex algebraic
groups).

G¢ has a Borel subgroup (maximal connected solvable subgroup) B,
unique up to conjugacy, which we can assume contains the Cartan subgroup
(maximal algebraic torus) T¢. There is a split extension U —- B — T where
U is the unipotent radical of B. There is also an opposite Borel subgroup
B~ such that BN B~ = Tg; it fits into a similar split extension U~ — B~
— T¢. On the Lie algebra level we have gc = tc @ u @ u~, with u @ u~
being precisely the sum of the nontrivial eigenspaces for the adjoint action
of tc on gc. The corresponding eigenfunctions A:t. - C map t into iR;
as is customary we replace each A by o = A/2mi to obtain a set @ of
nontrivial R-valued linear functionals on t-the real roots. These form a
(reduced, crystallographic) root system in t*. The positive roots ®* correspond
to u, the negative roots @~ to u~. A simple system of roots a,, ..., o, (here we
assume G is semisimple of rank [) is then uniquely determined as the set
of positive roots which are not decomposable as sums of positive roots. If we
assume G is simple, so that ® is irreducible, there is a unique “highest
root” oy, which is characterized by the property that for every positive
root o, &, + o is not a root. The corresponding eigenspace in u is precisely
the center of u. And, speaking of eigenspaces, let X, denote the eigenspace
(or “root subalgebra”) of g¢ associated to o € . For each «, the subalgebra
of gc generated by X, and X _, is isomorphic to sl(2, C). The corresponding
subgroup, isomorphic to SL,C or PSL,C, 1s G ,. Choosing generators
E, for the X,, we obtain a basis for g¢, consisting of the E (ae®) and
H, = [E,, E_,] (0e®™).
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The basis above can be chosen so that the antilinear map g¢ — gc¢
defined by E, > — E_, is a Lie algebra automorphism with fixed algebra g.
In particular, then, we have g = t @ (Pyo+ Y,), Where Y, is spanned by
E, — E_, and i(E,+E_,). The Y, are “cigenspaces” for the adjoint action
of t on g. Each Y, generates a Lie algebra isomorphic to su(2). The
corresponding subgroups G,, isomorphic to SU(2) or SO(3), are extremely
important; for example, they generate G (if G is semisimple). Note G, is a
maximal compact subgroup of G¢ ,.

In t there are three lattices: the coroot lattice R, spanned by the
coroots oY = 2a/o- o (t is identified with t* via a W-invariant inner
product), the integral lattice I = Ker(exp:t—T), and the coweight lattice
J={Xet:u(x)eZVaec®}. We have R < I < J, with I/R = n;G and
J/I = C(G). If we think of R as a group of isometries (translation) of t,
then R is normalized by W, the affine Weyl group W is the semidirect
product RW. Next, consider the Stiefel diagram, which consists of the
hyperplanes P, , = {X e€t: a(x) = n} (ae®, neZ). The connected components
of the complement of the diagram are the alcoves, and we have:

(1.1) THEOREM. (a) W acts simply transitively on the alcoves; (b) W
is generated by the reflections in the walls of any fixed alcove. (]

Now let " be the positive Weyl chamber: {X et:a(x) > 0Vaec®).
Assume (for convenience) that G is simple. Then as our standard alcove we
take o/ T = {X € €7 : ay(X) < 1}. The closure A of &/ " is an [-simplex—the
Cartan simplex; its walls are the hyperplanes o; = 0(1<i<l), oy = 1. The
wall oy = 1 will be called the outer wall. Thus W is generated by the set
S = S u {so}, where s, is reflection in the outer wall. For each subset
I of S the Iface A; of A is defined by A, = {XeA: oc,-(x) =0 if
iel, i #0, og(x) = 1 if 0el}. (Here S = {sq, 5} = {0, 1, = I}). We let
A, denote the interior of A,, so that A is the dlS]Olnt union of the

A The isotropy group in W of any X € A, is precisely WI (the subgroup
generated by I).

(1.2) THEOREM. Suppose X,YeA and oX =Y for some oceW.
Then X =Y and ceW,, where I={S€§:SX:X}. ]

The most important feature of A, for our purposes, is the following :

(1.3) THEOREM. Every element of G s conjugate to exp X for some
XeA If G issimply-connected, X is unique.

[The proof of this classical theorem is easily obtained from what we
have stated so far, together with the conjugacy of maximal tori and the
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fact that two elements of T conjugate in G are conjugate by an element
of W1. L]

The first part of (1.3) asserts that the map G/T x A 5> G given by
w(gT, X) = gexp X g~ ! is surjective. Thus G is a quotient space G/T x A/~
for a certain equivalence relation ~. If G is simply-connected, the second
part asserts that the equivalence relation is given by (9,7, X,) ~ (9,7, X,)
if and only if X, = X, = X (say), and g, = ¢g, mod C; exp X. Now
C,exp X({Y eg:(exp X)+-Y = Y}) is easily determined (we write g+ X for
(Adg) (X)): Cyexp X = (@yezV) D t, and furthermore {oe @: o(X) e Z}
is generated by the simple roots it contains—provided that (—o,) is counted
as a simple root. (Of course for X € A, a(x) e Z means ofx) = 0, +1). In
other words, if X € A,, the identity component of C, exp X is the (closed)
subgroup G; generated by T and the G, , i e l. We recall here that although
centralizers of tori are always connected, centralizers of elements need not be.
Fortunately, however, there is the following result.

(1.4) THeoreM (Borel [2], Bott [unpublished]). If © is an automorphism
of a simply-connected compact Lie group G, the fixed group of © s
connected. ]

In particular centralizers are connected in this case, so Csexp X = Gy.
We summarize the preceeding discussion in the next theorem.

(1.5) THEOREM. Let G be a simple, simply-connected compact Lie group,
regarded as a quotient space of G/T x A as above. Then the equivalence
relation on G/T x A is given by (g,T, X) ~ (g,T,X) if XeA, and
g, = g, mod G;. L]

We turn next to symmetric spaces. Let o be an involution of a semi-
simple G with fixed group K, and let K’ be any subgroup of K containing
the identity component. For our purposes a symmetric space is by definition
a space of the form G/K'. However we will consider exclusively simply-
connected symmetric spaces; in that case K’ is necessarily connected. Lifting
G to sn involution & of the universal cover G of G, we see that
G/K' = G/K", where K" is the fixed group of &. Hence we may assume
without loss of generality that G itself is simply-connected, and in that case
the Borel-Bott theorem guarantees that K is connected. The induced invo-
lution on g will also be denoted by o. We have g = k @ m, where m
is the (— 1)-eigenspace of o. Let M = exp m. Then:
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(1.6) THEOREM. The map m:G/K — M given by n(gk) = go(g™") is a
K-equivariant homeomorphism. (K acts on M by conjugation. ) 1

From now on we identify G/K with M. Let t,, be a maximal abelian
subspace of m (any two such are K-conjugate); we can assume tn < L
The torus T,, = expt, is a.maximal torus of M (or of G/K). The relative
Weyl group Wg x i Ngt,/Cxt,; as in the absolute case, it 1s a finite
group.

Now the involution o on g (resp. G) extends uniquely to an anti-
complex involution on g¢ (resp. G¢). Passing to fixed points, we obtain the
associated real forms Gg = (Go)° (not to be confused with (G°)¢!) and
gr = (g¢)°. Gg is semisimple real Lie group, containing K as a maximal
compact, and will play an important role.

Up to conjugacy, we can assume that ¢ is in “normal form”: o preserves
t., and commutes with the “compact” involution of g¢ (the involution with
fixed algebra g). With this assumption, we now consider the associated
relative root system. Since o is antilinear, its action on t& is given by

(o)) (x) = Mox). This action permutes the complex roots, and yields an
involution on the real roots ®:(ca)(x) = — a(ox). Let @, denote the
set of roots which restrict to zero on t,; and let W, denote the associated
Weyl group (note @, is spanned by the simple roots it contains; W, is
the subgroup generated by the corresponding simple reflections). The relative
root system X is the set of nonzero linear functionals $ on t,, which are
restrictions of roots o € ®. One can show that X is indeed a root system,
although it 1s not necessarily reduced—i.e., there may be roots B such that
2P 1s also a root. The following result is due to Satake [31]:

(1.7) THEOREM. There is a base B (simple system of roots) for @
such that if ®% is the corresponding set of positive roots, G preserves
®" — ®,. Furthermore any such base satisfies (a) B ®, is a base for
®y and (b) For each aeB — ®,, there is a unique o €B — @,
such that oo = o mod ZO. O

Using this theorem, the Satake diagram of G/K can be described as
follows. Start with the Dynkin diagram of G; its nodes are labelled by the
simple roots of ® (or by the set S). Color the nodes belonging to @,
black and color the remaining nodes white. By part (b) there is an invo-
lution (possibly trivial) on the set of white nodes; this is indicated by
drawing double arrows <> between the nodes of each nontrivial orbit. Six
examples are given in §6; see [13], pp. 532-4 for a list of all possible
Satake diagrams. To capture all of the structure of G/K another diagram
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is needed, which we will call the Dynkin Diagram of G/K. First define
the multiplicity mg of a root B in £ to be the number of roots in @
which restrict to . Then the Dynkin diagram of G/K is the Dynkin
diagram of X with the nodes labelled by their multiplicities; if B is a
simple root such that 2f is also a root, the B-node is to be labelled by
(mg, myp). Again, see § 6 for examples; for the moment we just mention an
extreme case: If G/K has maximal rank—i.e. t,, = t—then Gy is the so-called
split real form of G.. The nodes of the Satake diagram are then all white,
with trivial involution, ® = X and m, = 1 for all a. For example, take
G = SU(n), o(4) = A, K = SO(n) and Gg = SL(n, R). (The opposite extreme
—all nodes on the Satake diagram black—corresponds to the compact
involution on G¢ (so ¢ | g=1), and will be ignored.)

For our purposes it is necessary to consider the extended Satake and
Dynkin diagrams. ‘We recall here that the extended Dynkin diagram of an
irreducible (reduced) root system is obtained formally by considering — o
as a simple root and adjoining a corresponding node to the ordinary
Dynkin diagram. (For us this definition is motivated by loop groups (§ 3),
but it has many other uses—for example, in the Borel-de Siebenthal
classification of maximal rank subgroups of G [3]). Now in view of (1.7)
it 1s clear that o, restricts to the highest root of X, and so in particular
restricts non-trivially. Hence the extended Satake diagram is obtained by
coloring the (—ag)-node white (and leaving it fixed under the involution,
for reasons which should become clear later). The extended Dynkin diagram
for G/K 1s obtained from the ordinary one by adjoining — o, and labelling
it by its multiplicity (20, 1s never a root).

Next, we will need the analogues of the subgroups G¢ , and G, in the
real form Gg. Let B be a simple root in X, and let I; be the subset of S
determined as follows (cf. [22], pp. 135-36): In the Satake diagram form the
subdiagram consisting of the black nodes and the set of white nodes that
correspond to P under restriction (there are either one or two such white
nodes). Then, in this subdiagram, take the path component that contains the
white node(s) (even when there are two white nodes, they lie in one
component). The nodes of the diagram obtained define the set I; of simple
roots in @. The subgroup GIB of G is preserved by o, as is its commutator
subgroup G’,B, and the fixed group K, = (G’Iﬁ)" 1s the desired analogue of
G,. Similarly, Gg j is the o-fixed group in (GC)IB. Note that we have
selected a sub—Satake diagram corresponding to the rank one symmetric
space GIB/KB-

~
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Examples. In the split case, identifying ® with X, we have GIB
= Gy = SU(2) and Ky = SO(2) for all B. For the usual involution on
SU@2n) with K = Sp(n), the subdiagrams obtained all have the form
P o ®, SO GIﬁ = SU(4) and K, = Sp(2) for all B (§6.1).

If B, is the highest root of %, K, (Go)g, are similarly defined, using the
extended Satake diagram.

Lattices are defined exactly as before, using t,, T, and X in place of
t, T, ®. The coroot, integral, and coweight lattices for M will be denoted
R,,I,,J,, respectively. In fact, in each case the lattice for M is obtained
by simply intersecting the corresponding lattice for G (in t) with t,. The
definition of the affine Weyl group VT/G, k., the Stiefel diagram, alcoves,
Cartan simplex A, etc. are exactly as above—indeed these depend only
on the root system X. In fact A,, = A nt,. Theorems (1.3) and (1.5) also
go through in the following form, for example.

(1.8) THEOREM. Let G be a simple compact Lie group with involution ©
and fixed group K as above. Then every element of M is K-conjugate
to an element of the form exp X, X eA,,. If G/K is simply-connected,
X is unique.

To state the analogue of (1.5), we need to determine Cgexp X for
X e(A,),. Here I is a subset of S~R—the set of simple roots of X. Clearly
Cxexp X = (Cgzexp)°. It follows easily that Cgexp X = (G;)°, where I
is obtained from I in the obvious way: In the extended Satake diagram,
I' corresponds to the black nodes together with all the white nodes that
“restrict” to the nodes of I. (For example, if- I is the empty set—i.e.,
X lies in the interior of the Cartan simplex A,, — I’ corresponds to the
black nodes and Cyg exp X = (G)® = Cgt,). Let K; = (G;.)°.

(L.9) THEOREM. Let G,o,K, be as in (1.8), with G/K = M simply-
connected, and regard M as a quotient space of K/Cgt, x A, via the map
(kCxT,,, X)— kexp X k™'. Then the equivalence relation on K/Cgt, x A,
is given by (k;, X) ~ (ky, X) if Xe(A,), and k, = k, mod K.

The final volley in our barrage of notation has to do with Weyl groups.
If (W,S) is any Coxeter system, and I is a subset of S, W, is the
subcoxeter system generated by I. Each coset wW, has a unique element X
of minimal length, and I(xy) = I(x) + I(y) for all ye W, (I(w) is the length
of w as a word in the elements of S). We let W! denote the set of such
minimal length elements. We also recall that W’ has a partial order—the
Bruhat order—defined by setting x < y if y has a reduced decomposition
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y = 51 = si(s5,€S) and x has a reduced decomposition obtained by deleting
some subset of the s’s occuring in y. (For a very nice account of these
related matters, see [14]). If W is finite, W has a unique element w,
of maximal length, we define the length of W to be l(wy).

_ § 2. ToprOLOGICAL BUILDINGS

A Tits system (G, B, N, S) consists of a group G, subgroups B and N,
and a set S, which satisfy the following axioms:

(21) Bn N is normal in N, and S is a set of involutions generating
~ W = N/Bn N,

(2.2) B and N generate G,

(2.3) IfseS, sBs # B,

(24) ifseS, we W, then sBw < BwB U BswB.

(The use of expressions such as sBw is a standard abuse of notation).

Example. Let G be a reductive algebraic group over an algebraically
closed field (e.g., GL(n, C)), let B be a Borel subgroup (e.g. upper triangular
matrices), and let N be the normalizer of a maximal torus (that lies in B).
This data determines a set S of simple reflections generating the Weyl
group W (e.g., the usual generators sy, ..., s,_; of X£,). Then one of the main
results in the structure theory of reductive groups is that (G, B, N, S) is a
Tits system (see for example [ 15]).

Throughout this paper we will assume that the set S 1s finite; its
cardinality [ is the rank of the system.
We next list some of the important properties of a Tits system.

(2.5) (Bruhat Decomposition) G :HWGWBWB (disjoint union),
(2.6) (W, S) is a Coxeter system.

A subgroup P of G is parabolic if it contains a conjugate of B. In par-
ticular if I = S, the subgroup P, generated by B and I is parabolic.

(2.7) (a) The parabolic subgroups containing B are precisely the P;, I < S.
No two of these are conjugate; in particular there are exactly 2' such
subgroups, which form a lattice isomorphic to the lattice of subsets of S.

(b) PI — BWIB

(c) Every parabolic P is self-normalizing: NoP = P.
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