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360 S. HAYES AND G. POURCIN

2. Construction of (9{X) from (9(X) for Stein spaces X

According to a theorem of Oka [12], the normalization sheaf (9 of
weakly holomorphic functions on a complex space (.X, (9) is coherent.
Consequently, there is a canonical topology making & a Fréchet sheaf;
the global weakly holomorphic functions 0{X) will always carry this topology.
Since the holomorphic functions (9{X) on the normalization I of I are
topologically isomorphic to @{X) [8, 8.3], the question posed in the
introduction can now be answered.

Main theorem. For an irreducible Stein space X, the integral closure

§{X) of (9{X) is dense in <9(X).

Proof Let n : X -> X be the normalization of X and put A : 0{X).
Since tu is proper, X is F(X)-convex and therefore Ä-convex. Note that
Corollary 1 implies A c= (9{X) and that Ä is the closure of A with respect
to the canonical topology in 0(X).

Consider the equivalence relation R on X defined by A, i.e. (x, y) e R

iff for every / g A, f(x) f(y). Rossi's theorem [13] ensures that the

topological quotient Y : X/R can be given the complex structure of a

Stein space such that the projection p: X -+ Y is holomorphic and proper
and the map p* : (9{Y) -* 0{X\ f f ° p, induces an isomorphism (9(Y) Ä.

It suffices to show that every / g (9{X) can be factorized through a

holomorphic function on 7, meaning that an F g §(Y) exists with F ° p /.
This will be accomplished by first factorizing / e 0(X) through a continuous
function F on Y and then proving that F is actually holomorphic. The
existence of such a continuous factor F for / is equivalent to demonstrating
that every / g (9{X) is constant on the fibers of p. The validity of this

geometric statement will be shown now using commutative algebra.

0{X) is almost integral over (9{X) (see § 1), and hence over the localization
SfxA of A with respect to Sx : {g g &(X) : g(x) # 0} for every xeX.
Moreover,

5;M - spF(X)

holds [3, V, 1.5, Corollary 1]. The localization C(X)m(x) of the

Stein algebra (9{X) at the maximal ideal m(x): {/ e(9(X): f(x) 0} is

noetherian — even more, it's excellent [2, p. 35]. According to a theorem of

Mori-Nagata, the integral closure of a noetherian integral domain is

completely normal [7, 4.3, 3.6], implying
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(*) q(X) c n
xeX

For / £ ö?(i), aeX and b e p~1(p(a}), it is now possible to conclude

that f(a) f(b) is true. Let x: 7u(a). Due to (*), functions g e Sx and

he A exist with / h/g ° tl Since a and b are equivalent with respect to
the equivalence relation R, /(a) f(b) follows, and a continuous function
F : 7 -» C exists with F ° p /.

Since the Stein complex structure on 7 is not in general the canonical

ringed quotient structure, it is still necessary to verify that F is holo-

morphic in order to prove the density of A in ê{X). To that end, let
H e (9{Y) and G e ®(Y) have the property that H c p h and G o p gen.
Such functions exist because p*((9(Y)) — Ä holds. Then F — H/G follows,
and the germ Fp{a) is the germ of a holomorphic function at p(a), since

the germ Gp{a) of G at p(a) is a unit. The surjectivity of p implies that F
is holomorphic on 7, completing the proof of the theorem.

Note that the topology induced by &{X) on any subalgebra A of
&{X) is the metrizable topology of uniform convergence on compact subsets

of X. Because the closure Ä of A in 6(X) is its completion, Ä can be

obtained without referring directly to F{X). Thus the Main Theorem can be

stated as follows :

If X denotes the normalization of an irreducible Stein space X, then

G(X) is the completion of the integral closure C(X) of F(X).

3. Applications

In this section X will denote an irreducible Stein space with normalization

k : X -> X, &{X) will be the integral closure of the holomorphic functions
(9(X) on X, 3(X) the Fréchet algebra of weakly holomorphic functions on X
(or equivalently, the Fréchet algebra of holomorphic functions G(X) on X), and

Sx: {ge 0(X) : g(x) ^0} for x e X

Although the example given in the first section shows that the algebras

&(X) and &(X) are not always equal, the inclusion (*) in the proof of the
Main Theorem implies that they are locally equal in the following sense.

Theorem 2. For every x e X, the localizations of F(X) and G(X)
with respect to Sx coincide.
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