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360 S. HAYES AND G. POURCIN

2. CONSTRUCTION OF (O()Z) FROM ((X) FOR STEIN SPACES X

According to a theorem of Oka [12], the normalization sheaf @ of
weakly holomorphic functions on a complex space (X, ®) is coherent.
Consequently, there is a canonical topology making O a Fréchet sheaf;
the global weakly holomorphic functions (O(X ) will always carry this topology.
Since the holomorphic functions 0(X) on the normalization X of X are
topologically isomorphic to (O(X) [8, 8.3], the question posed in the intro-
duction can now be answered.

MAIN THEOREM. For an irreducible Stein space X, the integral closure
~ ~
O(X) of O(X) isdensein OX).

Proof. Let m: X — X be the normalization of X and put 4: = (5(3{)
Since m is proper, X is O(X)-convex and therefore A-convex. Note that
Corollary 1 implies 4 < O(X) and that A is the closure of 4 with respect
to the canonical topology in (5(X ).

Consider the equivalence relation R on X defined by A, ie. (x,y)eR
iff for every fe A, f(x) = f(y). Rossi’s theorem [13] ensures that the
topological quotient Y: = )z/R can be given the complex structure of a
Stein space such that the pI‘O_]CCthIl p: X > Y is holomorphic and proper
and the map p*: O(Y) — (/(X) f + f o p, induces an isomorphism (O(Y) =

It suffices to show that every f e@(X) can be factorized through a
holomorphic function on Y, meaning that an F € ((Y) exists with Fop = f.
This will be accomplished by first factorizing f € @(X~) through a continuous
function F on Y and then proving that F is actually holomorphic. The
existence of such a continuous factor F for f is equivalent to demonstrating
that every f 6(9(}2) is constant on the fibers of p. The validity of this
geometric statement will be shown now using commutative algebra.

(9()2 ) is almost integral over O(X) (see § 1), and hence over the localization
S;1A of A with respect to S.:= {ge€ O(X):g(x) # 0} for every xe X.
Moreover,

O ————
S 1A = S 10(X)

holds [3,V, 1.5, Corollary 1]. The localization S;'0(X) = (O(X)m(x) of the
Stein algebra (O(X) at the maximal ideal m(x): = {f € O(X): f(x) = 0} is
noetherian — even more, it’s excellent [2, p. 35]. According to a theorem of
Mori-Nagata, the integral closure of a noetherian integral domain is
completely normal [7, 4.3, 3.6], implying
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(¥) OX)c () S;'4.
xeX

For fe®X), aecX and bep Y(p(a), it is now possible to conclude
that f(a) = f(b) is true. Let x: = m(a). Due to (), functions ge S, and
he A exist with f = h/g o m. Since a and b are equivalent with respect to
the equivalence relation R, f(a) = f(b) follows, and a continuous function
F:Y — Cexists with Fop = f.

Since the Stein complex structure on Y is not in general the canonical
ringed quotient structure, it is still necessary to verify that F is holo-
morphic in order to prove the density of A4 in @(i). To that end, let
He 0(Y) and G € O(Y) have the property that Hep = hand Gep = gom.
Such functions exist because p*(((Y)) = A holds. Then F = H/G follows,
and the germ F,, is the germ of a holomorphic function at p(a), since
the germ G,, of G at p(a) is a unit. The surjectivity of p implies that F
is holomorphic on Y, completing the proof of the theorem.

~

Note that the topology induced by ((X) on any subalgebra A of
(9(X~) 1s the metrizable topology of uniform convergence on compact subsets
of X. Because the closure A of A in 6(X~) is its completion, 4 can be
obtained without referring directly to &‘()f). Thus the Main Theorem can be

stated as follows:
If X denotes the normalization of an irreducible Stein space X, then

~ I~
((X) is the completion of the integral closure (X)) of ¢(X).

3. APPLICATIONS

In this section X will denote an irreducible Stein space with normalization

~ r~
n: X - X, 6£X) will be the integral closure of the holomorphic functions

¢(X) on X, ¢(X) the Fréchet algebra of weakly holomorphic functions on X
(or equivalently, the Fréchet algebra of holomorphic functions C“()Z )on X ), and

S.i={gel(X):g(x) # 0} for xeX.

Although the example given in the first section shows that the algebras
~ ~

O(X) and O(X) are not always equal, the inclusion (%) in the proof of the

Main Theorem implies that they are locally equal in the following sense.

S~ ~

THEOREM 2. For every xe X, the localizations of G(X) and O(X)
with respect to S, coincide.
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