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240 H. GLUCK

The formulas for curvature, torsion and writhe are as follows.

Curvature = x = \/(?12—1) (1—-b?%
ab

Torsion =1 =

Writhe =p=./a®> +b>—1.

Consider the 3-dimensional linear space of vector fields
aT(t) + bN(t) + c¢B(z)

which can be written as constant coefficient combinations of the Frenet
vectors along the helix p(t). Covariant differentiation along the helix maps
this linear space to itself according to the Frenet formulas.

We’ve already noted in the introduction that the instantaneous axis vector
U = 1T — xB satisfies U’ = 0.

Comnsider the vectors N and V = (x/p)T + (t/p)B, which form an ortho-
normal basis for the orthogonal complement of U. Note that

N = —xT —11B = —pV, and
V' = (x/p)T" + (t/p)B" = (x/p) (xN) + (1/p) (tN) = pN.
Thus, covariant differentiation along the helix kills the instantaneous axis

vector and takes the orthogonal 2-plane to itself by a 90 rotation, followed
by multiplication by the writhe.

4. SASAKI'S EQUATIONS

Let M be any Riemannian manifold, and UM its unit tangent bundle
with the Riemannian metric described in section 1.

THEOREM (Sasaki [Sa], 1958). The curve (p(t), v(t)) in UM isa constant
speed geodesic there if and only if both of the following equations hold:

1) U” — _ <U” v/ > U
2) p" = R, vp .

Here, primes denote ordinary derivatives with respect to ¢t when applied
to functions, and covariant derivatives along the path p(t) when applied
to vector fields. For example, the first prime in p” represents ordinary
differentiation, the second, covariant differentiation. The symbol R denotes the
Riemann curvature transformation

R:TM, x TM, - Hom(TM,, TM,).
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We give a quick proof of Sasaki’s theorem, and refer the reader interested
in further details both to Sasaki’s original paper and to a brief treatment of
his result in [Ba-Br-Bu, pages 37-39].

First note that the energy of the curve (p(¢), v(t)) in UM is given by

1 1
E = 1/2J <p,p'>dt+ 1/2J <v,v'>dt.

0 0
This curve is a geodesic in UM precisely when it is a critical point of E
for fixed end point variations. These include variations which fix all the foot
points p(t), that is, fixed end point variations of the second integral. This
second integral equals the energy of the curve u(t), lying in the unit sphere
in the tangent space to M at p(0), obtained by parallel translating u(t)
backwards along p(t) to p(0). Hence the curve u(t) is a geodesic, that is,
a great circle arc, in this unit sphere.

Because u(t) is a unit vector field, <u, u> = 1. Differentiating twice,
<u’,u> + <u,u'> = 0. Because u(t) runs at constant speed along a great
circle, u” 1s parallel to u. Hence u” = — </, u'> u. Parallel translating this
equation back out along p(t), we get Sasaki’s first equation.

To get Sasaki’s second equation, consider a fixed end point variation
(p(t, 5), v(t, 5)) of the curve (p(?), v(t)) in UM. Suppose this curve is a critical
point of the energy E for such variations. Then

1 1

0/0s <p',p'> dt + I/ZJ d/0s <v',v'> dt.

0

0 = dE/ds = 1/2f

0

The first integrand is processed by differentiating with respect to s, then
interchanging the order of the ¢ and s differentiations, and finally setting up
for integration by parts, yielding

0/0t <0p/0s,p'> — <0dp/ds,p"> .

The second integrand is processed similarly, except that the Riemann
curvature transformation appears as a penalty for interchanging the order of
the ¢ and s differentiations, since this time both are covariant. We get

0/0t <0v/ds,v'> — <0dv/ds,v"> + <R(Op/ds, p')v, v'> .

Integrating these two expressions with respect to z, as required, the leading
term of each drops out because the variation is fixed end point. Furthermore,
the second term of the second expression is dead zero: since <v,v> = 1,
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0v/0s is orthogonal to v, while by Sasaki’s first equation, v” is parallel to v.
We get

1
0= J <0p/ds, p"> — <R(0p/ds, p')v, v'> dt .
0
Capitalizing on the symmetries of the curvature, we rewrite this as
1
0 = J <p”"—R(, v)p', Op/0s> dt .
0

Since p(t, s) was an arbitrary fixed end point variation, we get
pll _ R(Ul, v)p/ — 0 ,

which is Sasaki’s second equation.

Thus if the curve (p(t), v(t)) is a geodesic in UM, then both of Sasaki’s
equations must be satisfied. Conversely, if these equations are satisfied, then
the curve 1s a critical point of the energy E for fixed end point variations,
and hence a geodesic in UM. This completes the proof of Sasaki’s theorem.

Here are some immediate consequences of Sasaki’s theorem.
Suppose (p(t), v(t)) is a constant speed geodesic in UM. Then:

1) The vertical speed | v'(t) | is constant. Indeed,
<> =1=<p,vV> =0,
and hence
0/0t <v,v'> =2 <v,vV> = -2 <v,v> <p,vV> =0,
by Sasaki’s first equation.
2) The horizontal speed | p'(¢) | is also constant. We have
oot <p',p'> =2<p',p'> =2 <RW,v)p,p'> =0,

by Sasaki’s second equation together with the skew-symmetry of the Riemann
curvature tensor <R(-,:)-,+ > in its last two positions.

3) If u(z) is a parallel vector field along p(z), then Sasaki’s second equation
reduces to the equation p” = 0 of a geodesic in M. Conversely, if p(z)
is a geodesic in M and v(t) a parallel unit vector field along it, then
Sasaki’s two equations are clearly satisfied, so (p(t), u(t)) must be a geodesic
in UM. But there will also be geodesics (p(¢), v(t)) in UM for which p(t)
is a geodesic in M, while v(t) is not parallel along p(¢).
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