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396 J.-L. COLLIOT-THELENE

générale fut développée par E. Lutz (1937) et A. Weil (1936), qui étudiérent
la structure du groupe topologique E(k) lorsque k est un corps p-adique (ce
quon peut transcrire aujourd’hui au moyen des groupes formels et des
modeles de Néron). Chatelet attira l'attention sur le fait que la méthode
d’E. Lutz permet la détermination effective des points exceptionnels lorsque
le corps de base k est un corps de nombres quelconque. Dans une note
de 1940, Chatelet observe que les résultats de Lutz permettent de borner
uniformément la torsion des courbes elliptiques définies sur un corps de
nombres k et d’invariant j fixé (il suffit de se placer sur une complétion
p-adique de k; a k-isomorphisme pres, il n’y a alors quun nombre fini
de courbes elliptiques d’invariant j donné, et pour chacune d’elles le groupe
de torsion est fini). C’est un probléme ouvert de savoir si la condition sur j
peut €tre omise (dans le cas k = Q, c’est un théoreme de Mazur que 'ordre
du groupe de torsion est au plus 16).

3. SURFACES CUBIQUES

C’est la partie de 'ceuvre de Chatelet qui a joué¢ un grand role dans mes
recherches personnelles.

Sauf mention du contraire, les surfaces cubiques ici considérées sont
supposées absolument irréductibles et non coniques. Le corps de base k est
pris de caracteristique z€ro.

3.1. AvaNT CHATELET.

De 1940 a 1944, Mordell et B. Segre s’intéressent aux surfaces cubiques.
[Is montrent que si une telle surface X définie sur k posseéde un point
rationnel non singulier, alors il existe une application rationnelle dominante
définie sur k d’'un plan projectif sur X. En particulier les points rationnels
sont denses pour la topologie de Zariski. B. Segre montre en 1944 qu’une
surface cubique singuliére X qui possede un point rationnel non singulier
est k-rationnelle (k-birationnelle au plan projectif) sauf si X possede exactement
deux points singuliers conjugués. En 1951, ce méme Segre étudie les surfaces
cubiques non singulieres. On dit qu'une telle surface contient un S, si elle
contient un ensemble globalement défini sur k de n droites gauches deux
a deux. Segre montre que si X est k-rationnelle, alors X contient néces-
sairement un S;, un S,, un S; ou un S, (comme le montrérent indé-
pendamment en 1970 Swinnerton-Dyer et Iskovskih, X contient en fait un
S,, un S; ou un S¢). En 1951, Segre donne aussi les premiers exemples
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de surfaces cubiques X qui possédent un point rationnel non-singulier mais
qui ne sont pas k-rationnelles. En 1953, Selmer établit le principe de Hasse
pour les surfaces cubiques diagonales

ax® + by® + cz® +dt* = 0, abledek*’.

En 1955, Skolem établit le principe de Hasse pour les surfaces cubiques
singulieres.

3.2. LA CONTRIBUTION DE CHATELET [1953] [1954a] [1954b] [1958]
[1959b] [1966].

Tout d’abord, Chatelet montra qu'une surface cubique non singuliere qui
contient un S; ou un S, satisfait le principe de Hasse. Ce résultat généralise
le résultat de Selmer mentionné ci-dessus. La clé de la démonstration est
que si X contient un S, alors X est k-birationnelle a une surface de
Severi-Brauer. Les notes de 1953 et 1954 contiennent des équations concretes
pour des surfaces satisfaisant les dites conditions.

Dans [1954b], Chatelet se demande comment décrire ensemble X(k)
des points rationnels d’'une surface cubique X lorsque k est un corps de
nombres et que X n’est pas k-rationnelle, ce qui exclut une représentation
parametrique essentiellement biunivoque. On pourrait a priori chercher un
nombre fini de paramétrisations multivoques @;: X; —» X avec X(k)
= [ )i 0i(X;(k)) et chaque X; k-birationnel au plan projectif P2. Chatelet
remarque que cela semble trés difficile (en 1967, Manin montrera que
C’est en genéral impossible). Aussi Chatelet fait-il la suggestion trés originale
suivante: chercher de telles paramétrisations, mais avec X, k-birationnel a

Py pour un entier n > 2. Il prend alors comme exemple la surface X
d’équation

Ngp(x+oy+ow’z) = 1
avec K = k(w) extension cubique non cyclique du corps de nombres k. Ici
X(k) = K*' est le groupe des éléments de K* de norme 1. Si L/k est la

cloture galoisienne de K/k, G = Gal(L/k) = <s,t> avec s° = t2 = |
Chatelet montre que I'application

>

@: L* - K*!
x> (s(0)/) - (¢ (s(x))/)

a un conoyau fini. La démonstration utilise des factorisations fort rémi-
niscentes de la démonstration du théoréme de Mordell-Weil faible. En
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fait, application @ est, pour des raisons algébriques, surjective quel que soit
le corps k. Mais la méthode inspira des travaux ultérieurs (voir 3.3).

En 1958, Chatelet s’intéressa a des surfaces cubiques avec deux points
singuliers conjugués:

y2 — az’ = (x—ey) (x—ey) (x—e3) (X).

Les résultats qu’il obtint et que je vais maintenant décrire eurent une
grande influence sur les recherches ultérieures.

Pour ces surfaces, appelées depuis surfaces de Chatelet, il établit ([19595],
[1966]), lorsque k est un corps de nombres, I'existence d’'un nombre fini
de paramétrisations pour les points rationnels, du type suggéré plus haut
(les X, sont ici k-birationnels & P}). Ici, une seule paramétrisation ne suffit
en général pas a couvrir les points rationnels d’une telle surface.

La méthode est directement inspirée de la démonstration de Weil du

théoréeme de Mordell-Weil faible. Si K est I’extension quadratique k(\/g) de
k et N désigne la norme de K a k, Chatelet considere I'application:

[ X(k) - (k*/NK*)
(x, ¥, 2) > (x—e;, x—e,)

et montre qu’elle a une image finie. Par ailleurs, il montre que le noyau de
f est constitué des points de X(k) qui sont obtenus a partir de X(K)
par lapplication p qui a un point P e X(K) associe le troisieme point
d’intersection avec X de la droite passant par P et par le conjugué de P
(composition de P et de son conjugue). Cette application peut étre vue comme
I'application ¢, : X (k) — X (k) induite par une application rationnelle définie
sur k de la k-variéte algebrique X; = Ry (Xg) vers X. Ici Ry est le
foncteur de descente « a la Weil » qui transforme une variété définie sur K
en variéeté définie sur k, en multipliant la dimension par le degré de K sur k.
Soit S le k-tore algébrique défini par u — avi = 1, u3 — av? = 1, et soit
I l’espace principal homogene sur X sous S défini par les équations

x —e, =ul—av?, x—e, = us— avj.
Ce que Chételet établit plus précisément, c’est d’une part que I'application
rationnelle Ry, (Xx) — X définie par la « composition » se factorise par une
application i: Ry (Xg) — 7, d’autre part, par un calcul explicite et qui a ce
jour n’a pas encore perdu tout son mystere, que I'application i est k-bira-
tionnelle. Ce calcul est analogue a la présentation de la multiplication par 2
sur une courbe de Weierstrass E comme espace principal homogene sur E
sous le groupe p, X W, donné par les equations x — e; = ul, x — 2y, = ui,

|
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Comme X, est ¢videmment une surface K-rationnelle, la k-variété
X, = Ryu(Xg) est k-rationnelle, si bien que Pon a paramétré les points du
noyau de f. Pour paramétrer les points de X(k) d’image non triviale par f,
Chatelet observe par un calcul fort instructif que pour tout o = f(Po),
les points M de f~ (o) = X(k) sont obtenus a partir des points de ¢ (X (k)
en appliquant la « symétrie » par rapport au point Py .

3.3. APRES CHATELET.

Les travaux consécutifs a ceux de Chitelet se sont en général places
dans la perspective plus large de I'étude des surfaces rationnelles et aussi
de certaines variétés rationnelles de dimension plus grande. Comme ces
travaux ont fait récemment 'objet d’exposés généraux (Manin/Tsfasman 1986,
Pauteur 1986), on se contentera ici de décrire les développements ayant trait
directement aux recherches de Chatelet.

Manin et Iskovskih, généralisant des résultats d’Enriques (1897) ont établi
une classification k-birationnelle des surfaces rationnelles. Dans cette classifi-
cation, les surfaces de Chatelet généralisces:

y? — az? = P(x), degP <4

apparaissent comme les surfaces arithmétiquement non-triviales les plus
simples. Elles ont servi de banc d’essai pour toutes les conjectures concernant
les variétés rationnelles, conjectures dont on a quelques raisons d’espérer
quelles s’inserent dans un ensemble bien plus vaste, sortant du cadre des
varietés rationnelles.

Pour la commodité de I'exposé, disons que I'on s’est intéressé aux trois
themes suivants:

k-rationalité. Si X est une surface (variéte) rationnelle avec un k-point
non singulier, qu’est-ce qui empeéche X d’€tre k-rationnelle, ou du moins
k-stablement rationnelle (X x P} k-birationnel a P3), et y a-t-il une différence
entre ces deux notions (probleme de Zariski, mentionné par B. Segre en
1950)?

Principe de Hasse. Si k est un corps de nombres, décrire obstruction a
la validité du principe de Hasse.

Description des points rationnels. Si k est un corps de nombres, et
X(k) # (O, obtenir des parametrisations finies du type de Chitelet pour
d’autres classes de variétés. A defaut, décrire des relations d’équivalence sur
X(k) approchant la décomposition en classes de paramétrisation.
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Manin et Voskresenskii dégagérent le role important du module galoisien
Pic (X) (X variété rationnelle projective et lisse) dans I'étude de la k-rationalité
(stable). Ainsi, au moins en caractéristique zéro, le groupe H(G, Pic(X))
est un invariant k-birationnel qui est essentiellement équivalent a un autre
invariant, le groupe de Brauer-Grothendieck de X. Ces invariants permettent
souvent de reconnaitre quune k-variété rationnelle n’est pas k-rationnelle,
ce bien quelle posséde un point rationnel.

Swinnerton-Dyer donna deés 1962 des contre-exemples au principe de
Hasse pour les surfaces cubiques lisses, et d’autres suivirent pour d’autres
types de surfaces rationnelles. Manin (1970) mit de I'ordre dans ces contre-
exemples, en les interprétant au moyen du groupe de Brauer-Grothendieck.

Dans son livre sur les formes cubiques (1970), Manin donne aussi son
point de vue sur la paramétrisation des points rationnels des surfaces de
Chatelet. Il introduit d’'une part la notion de R-équivalence sur les points
(€tre liés par une chaine de courbes de genre zéro), d’autre part ’équivalence
de Brauer, via laccouplement naturel X(k) x BrX — Brk. Il se trouve
que pour les surfaces de Chatelet ces deux notions coincident, mais il n’en
est plus ainsi pour les surfaces de Chatelet généralisées.

En 1970, je passai une année a Cambridge (Angleterre) et P. Swinnerton-
Dyer me suggera de comprendre en profondeur les calculs assez mystérieux
de Chatelet, ce afin de généraliser les résultats a d’autres variétés. En 1974,
je pus ainsi interpréter une partie des calculs de Chatelet grace a lutili-
sation de torseurs sous des tores particuliers (ainsi le calcul fort instructif
mentionne a la fin de 3.2 peut étre interprété au moyen d’une généralisation
de la loi de réciprocite d’A. Weil).

En 1976, Sansuc et moi-mé€me, inspirés par les articles de Chatelet de
1954 et 1959 d’une part et par les travaux de Manin et Voskresenskii
d’autre part, établimes pour les points rationnels des tores algébriques
I’analogue du résultat de paramétrisation finie de Chatelet. Ce résultat peut
s'interpréter dans la perspective de la « descente » sur les points rationnels
d’une variété rationnelle X. Comme Chatelet, on utilise des torseurs sur X
sous des tores, plutét que le groupe de Brauer-Grothendieck (de tels torseurs
donnent une meilleure approximation de la R-equivalence sur X(k)). En 1984, -
Sansuc, Swinnerton-Dyer et moi-méme plimes compléter le programme de la
descente pour toutes les surfaces de Chatelet généralisées. Ainsi, si une telle
surface X posséde un k-point et si Pinvariant Pic(X) est « trivial », alors X
est stablement k-rationnelle. Comme d’autres invariants, non stables, per-
mettent parfois de montrer que X n’est pas k-rationnelle, ceci mena a une
réponse négative au probleme de Zariski, tant pour les surfaces sur Q
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(exemple: y?+3z2=x>—2) que pour les variétés de dimension 3 sur C
(résultat obtenu en collaboration avec Beauville). Par ailleurs, ’obstruction de
Manin au principe de Hasse (donnée par le groupe de Brauer-Grothendieck)
est ici la seule, et ceci permet de déterminer effectivement si une telle surface a
un point rationnel. Enfin, les points rationnels d’une telle surface peuvent
étre décrits au moyen d’un nombre fini de paramétrisations par des varietés
k-rationnelles.

Dans ses recherches, Francois Chitelet ne s’est jamais enlis¢ dans un
formalisme gratuit. Les idées qu’il a lancées sont encore fécondes aujourd’hui,
et "aimerais en conclusion redire combien elles m’ont marque.
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