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POLYNOME DE JONES-CONWAY 345

Si la suite f(l),.., f(n) est décroissante, g est égal au cardinal de
image de f diminué d’une unité, et p est égal & n — 1 — g. Comme de
plus la base B(p) ne contient qu’une seule fonction décroissante, on vérifie
aisément le lemme.

PROPOSITION 3-7. Soit ¢ wune fonction de Z dans N de poids
n=p+gq. Soient u et v deux éléments de A, et A,. Alors on a

T(p(uv) = zTcp’(u)Y:p—(p'(v) s

la sommation ayant lieu sur toutes les fonctions ¢  de poids p, comprises
au sens large entre 0 et .

Démonstration. Désignons par H, x H, I'image par I'application x de
H,® H, dans H,. Le module M(¢p) est isomorphe, en tant que H, x H,-
module a la somme directe des modules M(¢') ® M(p—@’), @ appartenant
a I'ensemble des fonctions de poids p et comprises entre 0 et ¢. Soient x
et y des représentants de u et v dans H, et H,. Comme la trace de
u @ v agissant sur M(¢') ® M(p— ') est égal au produit de la trace de u
agissant sur M(o’) par la trace de v agissant sur M(p— '), on obtient
le résultat cherché.

COROLLAIRE 3-8. Soit @ une fonction a support fini de Z dans N.
Soit & une bijectionde Z dans Z. Alors les formes linéaires T, et T
sont égales.

Qo

Démonstration. D’apres le lemme 3-6 T, et T,,., prennent la méme valeur
sur les €léments ¢, de A. D’aprés la proposition 3-7, si, pour tout e,
T, et T,, prennent les mémes valeurs en u et en v, elles prennent, pour
tout @, la méme valeur en uv. On en déduit que T, et T
quel que soit .

Il en résulte que T, ne dépend que de la partition du poids n de @
en les nombres @(p). Cette partition est caractérisée par la suite finie

Pi, P2, - p; désignant le nombre de fois ou ¢ prend la valeur i. On notera
alors T, sous la forme T, ou u est le mot ¢?' c5> ... .

0oe SONt égales

§4. LA TRACE T

Soit x = (x;) une famille de symboles. On désignera par A(x) lalgebre
. des séries en les x; a coefficients dans K = Z[A, A~ ', p, p~!]. Un élément de
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A(x) est donc une combinaison linéaire finie ou infinie de mondomes finis
en les x;, a coefficients dans K. En affectant a chaque x; un degré 1,
A(x) devient une algébre graduée. Si x et y sont deux familles de symboles,
A(x, y) désignera l'algebre A(z), z étant I'union disjointe des deux familles.

Le i-ieme polyndme symétrique élémentaire en les variables x; sera noté
¢;(x). L’algebre des séries symétriques de A(x) est donc I'anneau gradué des
séries formelles K[ [c;(x), c(x), ... 1], c;(x) étant affecté du degré i.

Soit x une famille de symboles indexée par Z. Les éléments c;(x) seront
notés ¢;. On définit alors une application T de A dans K[c¢y,c,,..] de
la fagon suivante:

Vn=0, Vued,, T =) T,u]l]x?,
03 i

la sommation ayant lieu sur toutes les fonctions ¢ a support fini de Z dans N.
Pour tout u de A,, T(u) est une séric homogéne de degré n et symé-
trique, c’est donc un polynéme homogéne de degré n en les ;.

THEOREME 4-1. T est un morphisme de k-algébres graduées de A dans
K[cy,cy,...] et les images par T des classes ¢; de A sont données
par la formule suivante :

1+ px; 1+ pey + plcy + .
1 A T(c;) = =
) iZO (@) 1:11 — Ax; 1 — hey + APcy — .

Démonstration. 11 est clair que T est k-lincaire. Le fait que T
respecte le produit est conséquence de la proposition 3-7. D’apres le lemme 3-6,
on a pour tout n > 0,

O+WT(C) = ¥ A0+t [T x50,

la sommation ayant sur toutes les fonctions ¢ de poids n de Z dans N,
k désignant le cardinal du support de .

Si a est un entier de N, désignons par a le nombre qui vaut 0 ou 1
suivant que a est nul ou non. Le cardinal k du support de ¢ est donc

égal a la somme des nombres ¢(i) et I'on a

L+ (4w Y Tl) = Y TTA+ph™ D (hx,)*@,

i>0

la somme ayant lieu sur toutes les fonctions ¢ a support fini de Z dans N.
Ce qui implique




POLYNOME DE JONES-CONWAY 347

L+ Ok Y () =[] Y (a0

i>0 i az0

o Ax
= H<1+(1+u7\ )I—_—Tx—)

1

H1+pxi_1+ucl+p2c2+...
_il—XXi_l—)\‘Cl-i-}\,zCz—..

4-2. Démonstration du théoréme 1-5. On sait déa que l'algébre A est
engendrée par les classes ¢;, i > 0. Or, modulo les décomposables de I'algebre
K[c,,c5,..],0ona

14+ 04w Y T(e) = (L+pc; +p2c,+..) (T+Aey —A%cy +..)

i>0

=1+ Ape, + =AY, + WP +A%)cs + ..

T(c;) est donc, modulo les décomposables de K[c, c,, ... ], un multiple non
nul de ¢; et les éléments T(c;) sont algébriquement indépendants. Il en est
donc de méme des classes ¢; de A et A est la k-algébre des polynomes
en les variables c;.

Il est possible de donner une forme assez concise de la trace T de la
fagon suivante. Soient x et y des familles de symboles. Si f est une série de
I'anneau A(x, y), symétrique en x et en y, f est une combinaison linéaire
de mondémes de la forme wuv, u étant un mondme en les éléments c;(x)
et v un monoéme en les éléments c;(y). Si 'on remplace dans chacun de
ces monomes, u par le mondme correspondant en les classes c¢; et v par
Papplication T, ou v est obtenu en remplagant dans v chaque c¢;(y)
par la classe c¢;, on obtient une application linéaire de K[c,, ¢,,..] dans
lui-méme que I'on notera f .

THEOREME 4-3. La trace T est égale a f, [ étant la série
[ = 1;[ (1+xiyj) .
Démonstration. Par définition la trace T est égale a f , avec
f=§%@ﬂxw,

u(p) étant le mondme cy(y)P'c,(y)P? ... et p; désignant le nombre de fois ou [0
prend la valeur i. C’est-a-dire que 'on a

u(p) = H Co(y)  en convenant que co(y) est égal a 1.
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Et cela implique

[ = ZH%(i)(J’)x(ip(i) = H Z (y)xi HH (L+x;;) -

i n>0 i

§ 5. LA TRACE DE JONES-OCNEANU

On se propose ici de montrer les théorémes 1-6 et 1-7.

5-1. Soit donc = une relation d’équivalence additive sur A possédant la
propriété suivante:

(P) Vn > Oa quHn’ tn(u) = tn+1[(ux 11)0,,] — tn+1[(ux 11)6;1] .

Comme o, *est égala ap™! — B~ 'o,, 0n a

tyr1[(ux 1o, '] = af " tegt, () — BT, [(ux 1)o,].

D’autre part, 'application de H, dans H,,,; qui a u associe (uxl,)o, induit
I'application 0 de E,_; dans E, (voir 3-2). La propriété (P) est donc
équivalente a4

Vo> 0,YueE,_,, fw= fOu=of tc,f(u)— B 'f(Ou),
c’est-a-dire
VueE, f)=fOw et (I+B—ac)fu)=0),

f désignant la projection canonique de E sur A.
D’autre part, E est un A-module libre de base (sq, $;,5,,..) et 'on a

\V,n > 0, eSn = Sn+1 et f(Sn) = Cn+1 ”
La propriété (P) est donc équivalente a
Vn >0, YueA, uc,=uc,,; et uc,(1+p—0ac,) =0,

et la plus petite relation = vérifiant la propriété (P) est donc la congruence
modulo I'idéal J de A engendré par les ¢léments

¢, —¢c;, n>1 et ¢ (1+B—0acy),
ce qui achéve de démontrer le théoréme 1-6.

5-2. Soit T une tresse de B,,n > 0. La classe de t,(t) modulo I'idéal I,
de A engendré par les €léments ¢; — ¢, est de la forme cP, ou ¢ représente
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