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Si la suite /(l),f(n) est décroissante, q est égal au cardinal de

l'image de / diminué d'une unité, et p est égal à n — 1 — q. Comme de

plus la base 5(cp) ne contient qu'une seule fonction décroissante, on vérifie

aisément le lemme.

Proposition 3-7. Soit cp une fonction de Z dans N de poids

n =z p 4- q. Soient u et v deux éléments de Ap et Aq. Alors on a

T9{uv) XT9,(u)V>),
la sommation ayant lieu sur toutes les fonctions cp' de poids p, comprises

au sens large entre 0 et (p.

Démonstration. Désignons par Hp x Hq l'image par l'application x de

Hp 0 Hq dans Hn. Le module M((p) est isomorphe, en tant que Hp x Hq-
module à la somme directe des modules M(cp') 0 M((p — cp'), <P' appartenant
à l'ensemble des fonctions de poids p et comprises entre 0 et (p. Soient x
et y des représentants de u et v dans Hp et Hq. Comme la trace de

u 0 p agissant sur M(cp') 0 M(cp —cp') est égal au produit de la trace de u

agissant sur M(cp') par la trace de v agissant sur M(cp —cp'), on obtient
le résultat cherché.

Corollaire 3-8. Soit cp une fonction à support fini de Z dans N.
Soit s une bijection de Z dans Z. Alors les formes linéaires T9 et T908

sont égales.

Démonstration. D'après le lemme 3-6 T9 et T(po£ prennent la même valeur
sur les éléments cn de A. D'après la proposition 3-7, si, pour tout cp,

T9 et T(poe prennent les mêmes valeurs en u et en v, elles prennent, pour
tout cp, la même valeur en un. On en déduit que T9 et T(poe sont égales
quel que soit cp.

Il en résulte que 7^ ne dépend que de la partition du poids n de cp

en les nombres cp(p). Cette partition est caractérisée par la suite finie
Pi,p2,... ; Pi désignant le nombre de fois où cp prend la valeur i. On notera
alors T9 sous la forme Tu, où u est le mot cpf cp22...

§4. La trace T

Soit x (X| une famille de symboles. On désignera par A(x) l'algèbre
des séries en les xt- à coefficients dans K Z[X, p, p-1]. Un élément de
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A(x) est donc une combinaison linéaire finie ou infinie de monômes finis
en les xf, à coefficients dans K. En affectant à chaque xt un degré 1,

A(x) devient une algèbre graduée. Si x et y sont deux familles de symboles,
^4(x, y) désignera l'algèbre A(z), z étant l'union disjointe des deux familles.

Le z-ième polynôme symétrique élémentaire en les variables xt sera noté

cf(x). L'algèbre des séries symétriques de A(x) est donc l'anneau gradué des

séries formelles c2(x),...]], c£(x) étant affecté du degré i.

Soit x une famille de symboles indexée par Z. Les éléments cfx) seront
notés ct. On définit alors une application T de A dans K[cl9 c2, ».] de

la façon suivante :

Vn > 0, Vw e A„, T(u) £ 7» [] *f(i),
<p i

la sommation ayant lieu sur toutes les fonctions cp à support fini de Z dans N.
Pour tout u de An, T(u) est une série homogène de degré n et

symétrique, c'est donc un polynôme homogène de degré n en les cf.

Théorème 4-1. T est un morphisme de k-algèbres graduées de A dans

K[c1, c2,... ] et les images par T des classes ct de A sont données

par la formule suivante :

\ v1 ty \ rr1 + ^xi1 + + h2c2 +
1 + (X+n) 2, T(ct) H- — —Ji>0 i 1 — kxi 1 — Xc1 + nc2 —

Démonstration. Il est clair que T est k-linéaire. Le fait que T
respecte le produit est conséquence de la proposition 3-7. D'après le lemme 3-6,

on a pour tout n > 0,

(X + H)T(C„) 2>»-^+ n)*n*?(i),
i

la sommation ayant sur toutes les fonctions (p de poids n de Z dans N,
k désignant le cardinal du support de cp.

Si a est un entier de N, désignons par ä le nombre qui vaut 0 ou 1

suivant que a est nul ou non. Le cardinal k du support de cp est donc

égal à la somme des nombres cp(i) et l'on a

i + (i+n) E T(Ci)
i > 0 tpi

la somme ayant lieu sur toutes les fonctions cp à support fini de Z dans N.
Ce qui implique
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1 + (A,-f}i) ^ T(Ci) — Yl X (1 + pA 1) Q^xi)
i> 0 i a^O

n(i+(i+^-i)r-^;)

_ rr1 +
—-

1 + + + -
i 1 — Xx[ 1 — + •••

4-2. Démonstration du théorème 1-5. On sait déjà que l'algèbre A est

engendrée par les classes c;, i>0. Or, modulo les décomposables de l'algèbre

JC[Ci,c2,...]» on a

I + (X+n) E T{Ci)(1 + pcj + \i2c2 +•••) (1 + Xcx — + —)

i > 0

1 + (k + y)cl + (|i2-X2)c2 + ([i3 + V)c3 +

T{Ci) est donc, modulo les décomposables de K[c1, c2,...], un multiple non
nul de ct et les éléments T(cf) sont algébriquement indépendants. Il en est

donc de même des classes ct de A et A est la /c-algèbre des polynômes

en les variables ct.

II est possible de donner une forme assez concise de la trace T de la

façon suivante. Soient x et y des familles de symboles. Si / est une série de

l'anneau A(x, y), symétrique en x et en y, f est une combinaison linéaire
de monômes de la forme uv, u étant un monôme en les éléments ct(x)
et v un monôme en les éléments ct y). Si l'on remplace dans chacun de

ces monômes, u par le monôme correspondant en les classes ct et v par
l'application Tv. où v' est obtenu en remplaçant dans v chaque ct (>')

par la classe ci9 on obtient une application linéaire de K[_cl9 c2,... ] dans

lui-même que l'on notera /.

Théorème 4-3. La trace T est égale à f, f étant la série

fn •

ij

Démonstration. Par définition la trace T est égale à /, avec

/ z "(v) n xti) >

q> i

u((p) étant le monôme c^yy'c^y)"2... et pt désignant le nombre de fois où cp

prend la valeur i. C'est-à-dire que l'on a

"(cp) n c<p(i)(f) en convenant que c0(y) est égal à 1.
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Et cela implique

f Enw^f1" n E nn^+^i^)-
(pi i n > 0 i j

§ 5. La trace de Jones-Ocneanu

On se propose ici de montrer les théorèmes 1-6 et 1-7.

5-1. Soit donc une relation d'équivalence additive sur A possédant la
propriété suivante :

(P) Vn > 0, Vm e H„, tn(u) tn+1[_(uxJcr"1].

Comme cr"1 est égal à aß-1 — ß_1a„, on a

t« + i[(«x IJct"1] aß^Cjt,» - ß_1t„ + i[(MX IJJctJ

D'autre part, l'application de Hn dans Hn + 1 qui à u associe (wxl^a,, induit
l'application 0 de En... x dans En (voir 3-2). La propriété (P) est donc

équivalente à
^

Vn > 0, Vn e En_x, f(u) ee f(du) ee ocß~ ^/(n) - ß" 7(0"),

c'est-à-dire

MueE f(u) /(0n) et (1 + ß —acJ/Xn) 0

/ désignant la projection canonique de E sur A.

D'autre part, E est un A-module libre de base (s0, s1? s2> •••) et l'on a

Vn > 0, 9s„ s„+1 et /(s„) c„ + 1

La propriété (P) est donc équivalente à

Vn > 0 Vn g A, nc„ nc„+1 et wc„(l + ß —occ1) 0,

et la plus petite relation vérifiant la propriété (P) est donc la congruence
modulo l'idéal J de A engendré par les éléments

cn — c'i n>l et c1(l + ß — acq),

ce qui achève de démontrer le théorème 1-6.

5-2. Soit T une tresse de Bn, n > 0. La classe de fn(x) modulo l'idéal I0
de A engendré par les éléments ct — c1 est de la forme cP, où c représente
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