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PROBLEME DE GAUSS 47

§3. UNE METHODE ELEMENTAIRE POUR CALCULER LE NOMBRE DE CLASSES ')

Soit d un entier > 1. D’aprées le § 2, le nombre i?(——d) de classes de formes
quadratiques de discriminant —d est le nombre de formes quadratiques
réeduites de discriminant —d, c’est-a-dire le nombre de triplets (a, b, ¢)
d’entiers vérifiant

b* —4ac = — d
(7) bl <a<c
b>0 si aestégala|b|ouac.

Nous savons déja que ﬁ(—d) est non nul si et seulement si —d est
congru a 0 ou a 1 modulo 4. Les conditions (7) entrainent que a, donc
aussi | b| est majoré par \/c% (§ 1, formule (3)) et que | b| est de méme
parit¢ que d. On en déduit aussitot la formule suivante, permettant de calculer
h(—d):

ProPoOSITION.  Supposons —d congrud O oua 1 modulo 4. On a:

h—d) = Y ) n(a, b)
0<b<+Vd/3 al((b2 +d)/4)
b=d(mod. 2) b<a<+(b2+d)/4

avec n(a,b) =1 silona b=0 ou a=b ou a=./(b*+d)/4, et

n(a, b) = 2 sinon.

Exemple. Calculons }?(—347). On a 10 < /347/3 < 11, d’ou le tableau
sulvant :

b (b* +d)/4 a n(a, b)
1 87 = 3.29 1,3 1,2
3 89 — —

5 93 = 3.31 — —

7 99 = 32.11 9 2

9 107 — —

dont on déduit l;(—347) = 5. Les coefficients des cinq formes réduites se
lisent sur le tableau; ce sont:

(1,1,87), (3,1,29), (3, —1,29), (9,7, 11) et (9, —7, 11).

') C.-F. Gauss, Disquisitiones Arithmeticae, n° 174 et 175.
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L’é¢tude des formes quadratiques se ramene facilement a celle des formes
primitives, c’est-a-dire celles dont les coefficients ont 1 pour plus grand
commun diviseur. En effet, si —d < 0 est congru a 0 ou a 1 modulo 4,
il existe un plus grand entier F tel que —d sécrive —dy F? avec —d,
congru & 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques
de discriminant —d, il existe un diviseur f > 1 de F et une classe C' de
formes quadratiques primitives de discriminant —df ~? tels que C = fC'

Les nombres de classes & et les nombres de classes primitives h sont
donc reliés par 1’égalité
(8) h—d) = » h(—df~?.

fIF

Lorsque F est égal a 1, ce qui équivaut a dire que d n’est pas
divisible par le carré d’un nombre premier impair et est congru a 3 (mod. 4),
a 4 (mod. 16) ou a 8 (mod. 16), on dit que —d est un discriminant

fondamental. Toute forme de discriminant —d est alors primitive et on a
W—d) = h(—ad).

§4. LE GROUPE DES CLASSES })

Cherchant a généraliser la formule classique
(*+y%) (' 24y %) = (xx' = yy)* + (xy +yx)?,

Gauss se demande pour quels couples (g, q') de formes quadratiques, il
existe une forme quadratique g” telle que 'on ait une identité

a(x, y)q'(x', y) = q"(x", y")
ou x” et y” sont des combinaisons linéaires a coefficients entiers de xx/,
xy', yx' et yy'.

Si 'on a une identité du type précédent, et si —d, —d', —d" désignent
les discriminants de ¢, ¢, q", le carré du déterminant de Dapplication
linéaire (x, y) > (x", y") (resp. (X', y') — (x", ¥")) est égal a dq'(x’, y')*/d" (resp.
d'q(x, y)*/d").

Gauss montre que lorsque g et ¢’ sont des formes primitives de méme
discriminant —d, il est possible d’obtenir une identit¢ du type ci-dessus,
avec ¢q” forme primitive de discriminant —d, et

g(x,y) = det((x,y) = (x", "), 4qlx,y) = det((x, ) (x",y").

1Y C.-F. GAuss, Disquisitiones Arithmeticae, n° 234 a 243.
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