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§ 3. Une méthode élémentaire pour calculer le nombre de classes *)

Soit d un entier ^ 1. D'après le § 2, le nombre h( — d) de classes de formes

quadratiques de discriminant — d est le nombre de formes quadratiques
réduites de discriminant — d, c'est-à-dire le nombre de triplets (a, fi, c)

d'entiers vérifiant

b2 — 4ac — d

(7) | b < a < c

b > 0 si a est égal à j b | ou à c

Nous savons déjà que h( — d) est non nul si et seulement si —d est

congru à 0 ou à 1 modulo 4. Les conditions (7) entraînent que a, donc
aussi | fi | est majoré par J~dß (§ 1, formule (3)) et que | fi | est de même
parité que d. On en déduit aussitôt la formule suivante, permettant de calculer
h{ — d) :

Proposition. Supposons —d congru à 0 ou à 1 modulo 4. On a:

h(~d) — Z n{a,b)
Cd/3 a\((b2 + d)/4)

b d(mod. 2) b < a ^ V(è2 + d)/4

avec n(a,b)1 si l'on a b0 ou a b ou a U(&2 + rf)/4, et
n(a, b) 2 sinon.

Exemple. Calculons £(-347). On a 10 < ^347/3 < 11, d'où le tableau
suivant :

b (b2 + d)/4 a n(a, b)

1 87 3.29 1,3 1,2
3 89 — _
5 93 3.31 — _
7 99 32.11 9 2
9 107 — _

dont on déduit £(-347) 5. Les coefficients des cinq formes réduites se
lisent sur le tableau ; ce sont :

(1, 1, 87), (3, 1, 29), (3, -1, 29), (9, 7, 11) et (9, -7, 11).

') C.-F. Gauss, Disquisitiones Arithmeticae, n° 174 et 175.
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L'étude des formes quadratiques se ramène facilement à celle des formes

primitives, c'est-à-dire celles dont les coefficients ont 1 pour plus grand
commun diviseur. En effet, si —d< 0 est congru à 0 ou à 1 modulo 4,

il existe un plus grand entier F tel que —à s'écrive —d0F2 avec —d0

congru à 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques
de discriminant — d, il existe un diviseur / ^ 1 de F et une classe C' de

formes quadratiques primitives de discriminant —df~2 tels que C fC'.
Les nombres de classes h et les nombres de classes primitives h sont

donc reliés par l'égalité

(8) h(-d) YK-df-2).
f\F

Lorsque F est égal à 1, ce qui équivaut à dire que d n'est pas
divisible par le carré d'un nombre premier impair et est congru à 3 (mod. 4),

à 4 (mod. 16) ou à 8 (mod. 16), on dit que — d est un discriminant

fondamental Toute forme de discriminant — d est alors primitive et on a

h(-d) h(-d).

§ 4. Le groupe des classes x)

Cherchant à généraliser la formule classique

(x2 + y2) (x'2 + y'2)xx+Gaus,f se demande pour quels couples (q, q') de formes quadratiques, il
existe Une forme quadratique q" telle que l'on ait une identité

q{x,y)q'(x',y') q"{x", y"),

où x" et y" sont des combinaisons linéaires à coefficients entiers de xx',

x/, yx' et yy'.
Si l'on a une identité du type précédent, et si — d, —d', —d" désignent

les discriminants de q, q\ q", le carré du déterminant de l'application
linéaire (x, y) h- (x", y") (resp. (x', y') i— (x", y")) est égal à dqf(x\ y')2/d" (resp.

d'q{x, y)2/d").

Gauss montre que lorsque q et qf sont des formes primitives de même

discriminant — d, il est possible d'obtenir une identité du type ci-dessus,

avec q" forme primitive de discriminant — d, et

q'(x', y') det ((x, y) (x", y")), q(x, y) det ((x', y') (x", y")).

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 234 à 243.
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