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108 PH. DELANOE AND A. HIRSCHOWITZ

note is to analyze how far these tools are necessary for the proof. It turns
out that it is possible to reduce the contribution of elliptic theory mainly
to a suitable local inverse function theorem for nonlinear elliptic operators
acting on smooth functions [22] [11].

The proof presented below deals only with the reduction to the crucial
estimates of order zero, two and three, already obtained by Aubin and Yau.
Although it is not so clear in [21] [24] these estimates were performed
essentially through coordinate free tensor calculus. We show how higher order
estimates may be obtained in the same way.

The whole approach applies as well to the corresponding real elliptic
Monge-Ampere equation on compact Riemannian manifolds [9] and to
various generalizations of it. We shall freely use arguments of Calabi [6, 7, &],
Aubin [1, 2, 3], Yau [23, 24], Bourguignon et al. [5] [21].

ACKNOWLEDGEMENTS. The second author thanks Otto Forster for
drawing him into the subject and Frangois Rouviere for stimulating conversa-
tions. Both authors thank Jean-Pierre Bourguignon who originally suggested
that they get in contact together.

1. THE MONGE-AMPERE EQUATION

Let X be a compact connected finite-dimensional Kaihler manifold.
® denotes the original C* Kahler form, g the corresponding Kahler metric,
¢ € C*(X) denotes a C* real-valued function on X, and we set

o =o+ . /—100¢

where @ and @ are the usual first order differential operators. Let ¢’
denotes the Kdahler metric corresponding to o'. In the sequel, “smooth”
means C*.

If g and ¢’ are viewed as morphisms from the antiholomofphic tangent
bundle into the holomorphic cotangent bundle T*, then (g'g~ ') is an endo-
morphism of T* the determinant of which, det (g'g~!) is a smooth function
on X. The function ¢ is said to be admissible if and only if det(g'g~?) is
strictly positive on X. One proves easily that if ¢ is admissible, then g’
is again a (positive definite Kéhler) metric e.g. [2], p. 119.

Let 2 [0, +o0). It is convenient to denote by A, the subset of C%(X)
consisting in all admissible real-valued smooth functions ¢ on X, satisfying,
~in case A = O the further zero average condition

)j((deg =0,
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where dX, denotes the volume form associated with g. When A > 0, 4, is an
open subset of C*(X): indeed, the natural injection C*(X) C?(X) is con-
tinuous, with respect to the Fréchet and Banach topologies; A, is the pull
back, by this injection of the open set

{peC¥X), det(gg™ ") > 0}
Definition 1.1. Let X be a smooth compact manifold, V' a smooth vector
bundle on X, C®(X, V) the Fréchet space of smooth sections of V. A

LCFC submanifold of C®(X, V), is a locally closed finite codimensional
Fréchet submanifold of C*(X, V).

The set A, is an open subset of the LCFC submanifold
{peC*X), )j((deg = 0}.
We define the map P,, from A, to C*(X), by

Py(@) = Ao — Logdet(g'g™1).

The proofs of theorems 0.1 and 0.2 have been reduced to the solution,
when A > 0, of the following complex Monge-Ampére equation (e.g. [21],
(lecture n° V), [4] p. 143):

(1) Pio) = f,

where f € C®(X) is given, and in case A vanishes, has to satisfy the natural
constraint (e.g. [1] p. 403, [24] p. 361, [21] p. 85),

Jelax, = [ dx,.

In any case, f ranges in a connected LCFC submanifold B, of C*(X).
To see that B, is connected, notice that 0 € B, and that given any f € B,,
the following path connects f to 0 in By:

te[0,1]1 - f; =:tf + Log(j e"dX,) — Log([dX,).

The derivative of the map P, at ¢ € 4,, is given by
(2) dP\(9, 59) = (A"+ 1) 3¢

where A’ stands for the Laplace operator on functions in the metric ¢’
[21] p. 96. Classically, it follows from the Maximum Principle [20], the
Fredholm Alternative theorem and from the elliptic regularity theory, that
“Py(@, ) is invertible Yo € A, , either from C®(X) to itself when A > 0, or
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from {ue C*(X), fudX,=0} to {ve C*(X), [vdX,=0} (dX, denotes the
volume form in the metric g’) when A = O.

For completeness, let us indicate how, for instance theorem 0.2, can be
reduced to equation (1) with A = 0. It is quite straightforward. First of all
we are given a cohomology class ¢ € H*(X, R) such that there exists a Kéhler
form ® in ¢; let p be the Ricci form of ®: pe C,(X), the first Chern
class of X.

Then we are given ye C(X) and hence f e C®(X) a real function
(defined up to an additive constant), which measures the deviation for ®
from satisfying 0.2:

Yy—p=.—100f.
Now we look for another Kéahler form ' €c¢, 1.e. we look for a smooth
real function ¢ (also defined up to an additive constant), where

o —o=./—13d0¢

such that the Ricci form p’ of o' coincides with .
In other words, we want ¢ to satisfy

p—p=./—100f,

or equivalently, if g and g are the Kahler metrics respectively associated
with o and o,

00 {— Logdet (g'g™ ")} = dof
which immediately yields equation (1) with A = O:

— Logdet(gg™") = f,

since anyway f is only defined up to an additive constant.

As ® and ®' are cohomologous and closed, so are the corresponding
volume forms, therefore X has same volume measured with the metrics g
and ¢'; this defines completely f, subject to the natural constraint mentioned
above.

2. A ToroLOGICAL LEMMA

In our setting, the continuity method becomes a “surjectivity method”
since it is based on the following
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