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238 H. GLUCK

2. GEODESICS IN US?

If (p(t), v(¢)) is a geodesic in the unit tangent bundle US?, then by the
discussion in the preceding section, there must be a geodesic h(tf) through
the identity in SO(3) such that

Bo) (p(0) = p&)  and  K(D) (W0)) = o(0).

But A(tf) must fix a line in three-space, and rotate the orthogonal two-plane
at constant speed. Hence p(t), if it moves at all, must travel along a great or
small circle, and v(t) must make a constant angle with this circle.

A concrete distance formula between points (p,v) and (q,w) in US?
is easily obtained. Let & denote the distance between p and g on S?, with
0 <6 <= If this distance is less than =, that is, if p and g are not
antipodal, then parallel translate » along the smaller arc of the unique great
circle between p and ¢, and let & denote the angle at g between this
parallel translate of » and the vector w, as shown in Figure 3. If 6 = m,
set ¢ = 0. Finally, let d denote the distance between (p,v) and (g, w) in
US2. Then a straightforward calculation reveals the formula

cos (d/2) = cos (0/2) cos (g/2),

which is just the Pythagorean formula on a round sphere of radius 2, as
indicated in Figure 4. Indeed, we have

US? = SO(3)/SO(1) = SO(3),

a round, real projective 3-space.
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