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EXTENSIONS DE MODULES
ET COHOMOLOGIE DES GROUPES

par Pierre-Paul Grivel

Introduction

Soit M et N deux modules à gauche sur un anneau R. Il est bien

connu que le groupe Ext nR(N;M) classe, à équivalence près, les n-extensions

de M par N.
D'autre part soit G un groupe et A un groupe abélien sur lequel

G agit à gauche. On définit le n-ième groupe de cohomologie de G à

coefficients dans A comme étant le groupe Hn(G;A) ExtZG(Z;^4) où Z
est considéré avec sa structure de ZG-module trivial; autrement dit
on définit les groupes H*(G ; A) comme étant les dérivés du foncteur
HomZG(Z ; A) AG.

Pour calculer ces groupes on utilise en général un complexe standard,
à l'aide duquel on obtient une interprétation des premiers groupes de

cohomologie.
Il paraissait intéressant d'obtenir directement l'interprétation de H1(G ; A)

et H2(G;A) à partir de l'interprétation de ExtZG(Z;^4) et Ext|G(Z;X),
sans avoir recours au complexe standard.

1. Rappels sur les extensions

1.1. Soit R un anneau. Soit M et N deux R-modules à gauche. Une
n-extension de M par N est une suite exacte de R-modules

Ç; 0 - M A Ex % E2 % V En % N - 0

Deux rc-extensions Ç et % de M par N sont élémentairement
équivalentes s'il existe n morphismes de R-modules yt: Et E\ tels que
Yitx a', afri Yi + iOtf pour i « 1, 2,.., n-1, et a'nyn a„, ou n
morphismes de R-modules yE\ ^ Et tels que y^oc' a, 0Lty\ y; + 1a'f pour

1, 2,.., n-1, et any'n a'n.
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Deux n-extensions £ et de M par N sont alors équivalentes s'il
existe une suite d'équivalences élémentaires reliant é, à

On remarquera que dans le cas n 1 l'équivalence élémentaire est déjà
une relation d'équivalence car le morphisme y est alors un isomorphisme.

On notera [£] la classe d'équivalence de l'extension

1.2. Soit £, une rc-extension de M par N. Soit u: M -> M' et v: N' ^ N
deux morphismes de R-modules.

Par produit cofibré on définit l'extension uÇ de M' par N et par produit
fibré on définit l'extension E,v de M par N'.

1.3. Soit £, et ^ deux n-extensions de M par IV. Notons V : M © M -> M
l'application codiagonale définie par V(mx ; m2) m1 + m2etA:M->M©M
l'application diagonale définie par À(m) (m ; m). La somme de Baer de

R] et R'] est définie en posant [Ç] + [£'] [V(Ç®Ç')A].

Muni de cette opération l'ensemble des classes d'équivalence des n-exten-
sions de M par N est un groupe abélien.

1.4. Il est bien connu que les classes d'équivalence des n-extensions de M
par N sont classées par le n-ième foncteur dérivé Ext nR(N;M) du foncteur

HomÄ(IV ; M).

1.5. Considérons maintenant un groupe G et un groupe abélien A.

Une extension de A par G est une suite exacte de groupes

^:0 ->• A ^ A G -» 1.

Si £, et sont deux extensions de A par G alors % est équivalente
à é,' s'il existe un morphisme de groupe y :£->£' tel que yX, U et

p'y p. On notera [£] la classe d'équivalence de l'extension

1.6. Si £ est une extension de A par G on définit un morphisme de

groupes 0 : G -> Aut (A) en posant, pour tout g e G et a e A,

XQ{g)(a) s

où s: G -> E est une section ensembliste de p. Ainsi le groupe abélien A

est muni d'une structure de ZG-module à gauche.

1.7. Si le groupe A est déjà muni d'une structure de ZG-module à gauche

on désignera par e(G ; A) l'ensemble des classes d'équivalence des extensions

de A par G telles que l'action de G sur A induite par l'extension soit

égale à l'action donnée de G sur A.
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L'ensemble e(G;A) n'est pas vide car il contient la classe d'équivalence

de l'extension

0->A±A x G^>G-+1

donnée par le produit semi-direct.

1.8. Muni de la somme de Baer l'ensemble e(G;A) a une structure de

groupe abélien.

1.9. L'extension donnée par le produit semi-direct est scindée. Si

a: G -+ A x G est une section de n on a nécessairement cj(g) (fG(g) ; g)

où fjgg) e A. Soit a1 et a2 deux sections de n; on dit que est ^4-conjuguée
à a2 s'il existe un élément a e A tel que, pour tout g e G, on a

ai($) i(a)a2(g)i(a)~1. On notera [a] la classe de v4-conjugaison de la
section a et on désignera par h(G ; A) l'ensemble des classes de ^4-conjugaison
des sections de n.

1.10. Si u1 et a2 sont deux sections de n on définit la section <j1 + a2
en posant (ax + a2) (g) fai(g) + fG2(g) ; g). Cette opération induit sur h(G ; A)
une structure de groupe abélien.

2. Dérivations et extensions

2.1. Soit G un groupe. L'anneau de groupe ZG est muni d'une augmentation

s: ZG -» Z donnée par e(£ ngg) Y, ng. Si on considère Z avec
geG geG

sa structure de ZG-module trivial à gauche, s est un morphisme de
ZG-module et on obtient une extension de ZG-modules

o^/g-^zg-4z->o
où l'idéal d'augmentation IG est engendré, comme Z-module, par l'ensemble
{g -1 I g e G\{1}}.

2.2. Soit A un ZG-bimodule.

Une dérivation de G dans A est une application -» telle que, pour
tout g, he G, on ait f{gh) f(g) h+ g• f

L'ensemble des dérivations de G dans A forme un groupe abélien noté
Der (G ; A).

Pour tout a e A, l'application fa: G -> Adéfinie par fjg) g-a - a-g
est une dérivation, appelée dérivation intérieure de G dans A.
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L'ensemble des dérivations intérieures de G dans A forme un sous-groupe
de Der (G ; A) noté Int (G ; A).

2.3. On suppose dorénavant que le groupe G agit à gauche sur le groupe
abélien A.

On considère alors A comme un ZG-bimodule en faisant agir G

trivialement à droite sur A. Une dérivation de G dans A est donc une

application / : G -> A qui satisfait la condition /(<gh) g • f(h) + /(g). On

en déduit que /(1) 0.

De plus, pour tout a e A, la dérivation intérieure fa: G -> A est définie

par fa(g) g • a - a.

2.4. Lemme. Le groupe Der (G ; A) est isomorphe au sous-groupe de

Homz(ZG ; A) formé des morphismes de groupes abéliens f : ZG - A qui
satisfont la condition f(xyj f{x)e(y) + x* f(y) pour tous x, y e ZG.

Démonstration. Si f e Der (G ; A) et x £ ngg e ZG on définit
_ _ geG _/ : ZG -> ^4 en posant /(x) £ ngf(d)- Inversément si / e Homz(ZG ; 4)

geG

satisfait la condition de l'énoncé et si j : G ^ ZG est l'inclusion évidente, on
définit une dérivation / en posant / f °j •

2.5. Proposition. Il existe un isomorphisme de groupes abéliens

co : Der (G ; A) -> HomZG(/G ; v4).

Si / g Der (G ; A) on u ©(/) (g — 1) f{g) pour tout geG.

Démonstration. Soit / g Der (G ; v4); posons G)(/) / o i où i: IG -» ZG
est l'inclusion. Si x g ZG et y e IG on a, d'après le lemme 2.4,

®(/) (xy) /(xy) /(x)e(y) + X • /(y) x • co(/) (y) ;

donc co(/) est un morphisme de ZG-modules. De plus, pour tout geG,
on a <»(/) If/ • 1 /(ôf-1) /(?) - /(l) f(g)•

Définissons maintenant une application

co' : HomZG(/G ; A) Der (G ; A)

Si ue Homzg(/G ; 4) et g e G posons co'(u) {g) u(g— 1). Pour tout g, he G

on a

co '{u)(gh) u(g(h—l) + (g—l)) gfu(/i-l) + %-l)
g • co'(u) (/z) + ©'(m) te).
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Donc ©'(m) est une dérivation de G dans ri. On vérifie immédiatement que

COCO — lDer(G;T) ^ qUC COCO •

2.6. On rappelle que h(G;A) désigne le groupe abélien des classes de

ri-conjugaison des sections de l'extension de groupes donnée par le produit
semi-direct ri x G.

Proposition. Il existe un isomorphisme de groupes abéliens

Der (G ; ri)
F:h(G;A) Int (G ; ri)

Démonstration. Il résulte de 1.9 qu'à toute section a : G A x G on

peut associer une application fa : G -> ri telle que, pour tout g e G, on a

a(g) (fa(g);g). Compte tenu de la loi de multiplication du produit semi-

direct et du fait que a est un morphisme de groupes, on vérifie que
/a e Der (G ; ri).

Si g' est une section ri-conjuguée à a, il existe un élément ae A tel que
&{g) i(a)cr(g)i(a)~1 ; on en déduit que {a + fM~9 -a', g) donc

que f„ - f& e Int (G ; A).
On définit alors l'application F en posant L([cr]) [/CT], où [/J désigne

1 1 j r j 1 •
Der (G; ri)

la classe de ja dans le groupe quotient Int (G ; ri)
Il est immédiat de vérifier que F est un morphisme de groupes et que F

est bijective.

3. Le groupe H1(G;A)

3.1. Soit G un groupe. Comme d'habitude on munit Z de sa structure de
ZG-module à gauche trivial. De plus soit ri un ZG-module à gauche; on
considère ri comme un ZG-bimodule en faisant agir G trivialement sur la
droite de ri.

On se propose de démontrer l'existence d'un isomorphisme de groupes
abéliens

^ Der (G ; ri)

Compte tenu de la définition des groupes H*(G ; A) et de la proposition 2.6,
on obtient alors le résultat classique suivant.
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3.2. Théorème. Il existe un isomorphisme de groupes abéliens

H\G ; A) h(G ; A).

3.3. Pour construire l'application <t> on commence par considérer l'extension
de ZG-modules

0:0 IG -ù ZG 4 Z -> 0.

o Der (G ; A)
Soit [/] g

j t (G A)
rePr^sent^e Par une dérivation / g Der (G ; A) ; d'après

la proposition 2.5 on peut associer à / un morphisme / co(/)
g HomZG(/G ; A).

En faisant le produit cofibré de 0 par / on obtient l'extension de

ZG-modules

/0:O -» A A F 4. Z - 0.

Le ZG-module F est le quotient de ZG x A par le sous-module engendré

par l'ensemble {(/(x); — /(x)) | x g IG}. Si 7t: ZG x A F est la projection
canonique, les morphismes a et ß sont définis en posant a(a) 7i(0;a)
et ß7i(x ; a) — g(x).

Si /' g Der (G ; T) est un autre représentant de [/] on lui associe de

la même façon l'extension de ZG-modules

/'0: 0 -* A ^ F' * Z 0

3.4. Lemme. Les extensions /0 et /'0 sont équivalentes.

Démonstration. Il faut construire un morphisme de ZG-modules Ô : F -> F'
tel que le diagramme

0 ^ 4 A F i Z ^ 0

1A I S | J, lz
D ^ A ^ F' -> Z -> 0

a' ß'

soit commutatif.
Par hypothèse il existe 6g4 tel que f — f fb où fbe Int (G ; T).
On définit alors un morphisme de ZG-modules

A : ZG x A —» ZG x ^4

en posant À(x ; a) (x;a — X'b).
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Si x e IG on peut écrire x £ ng(g — l) si bien qu'en utilisant la propo-
geG

sition 2.5 on a

x-bE ng(g'b-b) E ngfb(g) E
geG geG geG

Â(E "gig-1)) fbix)-
geG

On a donc A(x; —/(x)) m (x; — f(x) — fb(xj) (x; — /'(x)) et on définit 8

par la condition tc'A Src.

On vérifie immédiatement que 8a a' et ß'8 ß.

3.5. L'application > est alors donnée en posant <£>([/]) [/Ö]-

3.6. On construit maintenant une application

Der (G ; A)

Soit [^] eExtzG(Z;^4) représentée par une extension de ZG-modules

^:0-4iiÊAZ-^0.
Choisissons un élément e e E tel que p(e) 1 et considérons la dérivation

fe e Int (G ; E).

Comme on a p/e 0 on peut définir une application fe: G ^ A par
la condition ^/e /e.

3.7. Lemme. /e e Der (G ; ^4) et [/e] ne dépend pas du choix de e.

Démonstration. Pour tous g, h g G on a

^fe(gh) (gh) • e - e g • (h • e-e) + g-e - e

g -Xf%h) + Ve(0)

% • /•</,) + /%)).
Comme X est injectif il en résulte que fe e Der (G ; Soit e' e E tel que

H(e') 1 ; puisque p(e-e') 0 il existe tel que
Considérons la dérivation fb e Int (G ; A). Pour tout g e G on a

Kfe-fe')(g)(g-e-e) - (g-e'-e1)

g • Mb) -
X(g-b-b«5t/„(g).

Ainsi fe — fe e Int (G ; A) et par suite [/e] ne dépend pas du choix de e.
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3.8. Supposons maintenant que l'extension de ZG-modules

%':0 ->• AS*E ^Z0

est un autre représentant de [%].

En choisissant un élément e' e E tel que p'(e') 1 on définit une
dérivation fe' g Der (G ; A).

3.9. Lemme. /e - fe' g Int (G ; A).

Démonstration. Les extensions é, et étant équivalentes, il existe un
morphisme de ZG-modules y : E -> F tel que le diagramme

U 1 Y 1 Hz
0-+y4-t£'-fZ^0X,' m'

soit commutatif.
Comme \ï(y(e) — e') 0, il existe b e A tel que X'(b) y(é) — é.
Considérons la dérivation fb g Int (G ; A). Pour tout g g G on a

Y>-(./"-.r"l fe) ïVfe) - Vf<3)
yfe-e-e) - fe-e'-e')
0*(yfe)-e') - (ï(e)-e')

X'(g-b-b)
yhftig)

Comme y est un isomorphisme et X est injectif il en résulte que

fe — fe' g Int (G ; A).

3.10. On peut donc définir l'application en posant ^(K]) [/e], et il
faut vérifier que W est la réciproque de 0.

3.11. Lemme. Y® lDfsr (G ; A) •

Int (G ; A)

„ Der (G ; A)
Démonstration. Si [/] g j \[G' A) ^ rePresentee Par f G ^er

alors vFO([/]) *P([/0]) où /0 est l'extension de ZG-modules

o-.Gfiz-^o
décrite au n° 3.3.
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Par définition du produit cofibré de 0 par / il existe un morphisme

de ZG-modules y : ZG -> F,définipar y(x) n(x ; 0), tel que le diagramme

0 IG ^ ZG i Z -» 0

fi Y iIL0 -> d. -> FZ^ 0
a ß

soit commutatif.
L'élément e tc(1 ; 0) e F vérifie la condition ß(e) — 1; donc ^([/O])

est représentée par la dérivation fe e Der (G ; A) telle que, pour tout g e G,

on ait a/%) g • e — e n(g — 1 ; 0).

Or on a fe /; en effet, compte tenu de la proposition 2.5 on a,

pour tout g e G,

u{fe-f)(g) a/%) - a/% — 1)

a/%) - yfe-1)
t% — 1 ; 0) — 7% — 1 ; 0) 0

3.12. LEMME. <PVF — lExtzG(Z;T)*

Démonstration. Soit [^] g Ext iG(Z ; A) représentée par l'extension de

ZG-modules

et choisissons un élément e e E tel que p(e) — 1 ; on a alors Off'fK]) [/e9]-
Il s'agit donc de démontrer que les extensions £, et /e9 sont équivalentes ;

pour cela il faut construire un morphisme de ZG-modules ô : E F tel

que le diagramme

0 A E A Z ^ 0

% I S | | lz
0->,4^F-+Z-+0a ß

soit commutatif.
Si u e E on a p(w —p(w)c) 0; on peut donc définir un morphisme de

groupes abéliens u : E -> ^4 tel que Ev(u) u — |%)e pour tout u e E.
Définissons alors ô en posant ô(w) 7i(p(w) ; d(m)). Il faut vérifier que ô

est un morphisme de ZG-modules ; or si g e G et u e E on a

g • S(u) - 5(0 • m) rc(p(u) (g - 1) ; • u(w)-u(gr • u)).
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Mais

H 9•»(")- v(g •«)) g• (m -1 - |

- \y{u){g-e-e)

- H(w)^/%)

X(-\x{

Il en résulte que g • 5(w) — b(g • u) 0.

Finalement on vérifie immédiatement que bX a et ß8 p.

3.13. Il reste à montrer que l'application est un morphisme de groupes
abéliens.

Soit [y g Ext£G(Z ; A) {i 1, 2) représentée par l'extension de ZG-irodules

Ç,-:0 -> A h E, U Z -* 0.

On choisit un élément et g Et tel que pf(ef) 1 et on considère la

dérivation fei g Der (G ; A) définie par XJ^g) g • et — et.
On a alors ¥(KJ) + *F(R2]) [/-] + [/"] [/"+ /«*].
Maintenant [^] + [Ç2] est représentée par l'extension de ZG-modules

et on a Ie diagramme commutatif suivant

A © A
Ä-1 © 1.2 m © M2

E, © £2 - Z © Z ^ 0

V| Y i l lz©z

A
X

E - Z
M

© z -> 0

UT 8Î î A

A
Xo

E0 -u ^0
Z -> 0

On choisit un élément e0 g E0 tel que p0(co) 1 et on considère la
dérivation feo g Der (G ; A) définie par X0feo(g) g • e0 — e0.

On a alors + ß2]) - [/-].

3.14. Lemme. /ei + fe2 — /eo g Int (G ; ^4).

Démonstration. Comme p(y(c1 ; c2)~^(eo)) 0, il existe un élément ae A
tel que X(a) y(e1\e2) — ô(c0). Considérons la dérivation fa g Int (G ; A).

Pour tout g e G on a, compte tenu du diagramme (3.13.1),

Hfei(g)+fe2(g)-feo(g)-fa(gj)o.
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4. Le groupe H2(G;A)

4.1. On reprend les hypothèses de 3.1. On se propose de démontrer

l'existence d'un isomorphisme de groupes abéliens

Q>:e(G;A) Ext |G(Z ; A).

Compte tenu de la définition des groupes H*(G ;A) on obtient alors le

résultat classique suivant.

4.2. Théorème. Il existe un isomorphisme de groupes abéliens

H2(G ; A) e(G ; A).

4.3. On va construire l'application <D.

Soit [^] g e(G ; A) représentée par l'extension de groupes

Ç:0 - AX EG- 1

Notons F le ZG-module libre engendré par l'ensemble £\{1}; autrement
dit x g F si et seulement si x pee, où pe g ZG et pe 0 pour presque

eeE\{ 1}

tous les indices e. On fait la convention que p1 1 0 dans F.
Soit L le sous-ZG-module de F engendré par les éléments de F de

la forme epe2 — pieJ - e2 — ex où et, e2 e E. On notera en particulier que les

éléments de la forme — \i(e)e~1 — e et — p(ù-1)-£ — e~où e e E, sont
dans L.

On pose M F/L et on note n : F -> M la projection canonique.

4.4. On considère maintenant la suite de ZG-modules

H:0 -» Ai Mi ZGi Z 0.

Le morphisme s est l'augmentation; on va définir les deux autres
morphismes.

Pour tout a e A on pose a(a) n(X(aj), mais il faut vérifier que a est
un morphisme de ZG-modules. Soit s: G -» E une section ensembliste de p.

Pour tout gEGstaeA on a

a(g-a) - g- a(a) 7i(s(0)X(a)s(gr)"1 X(a))

n((s(g)Ma)s(g) ~1 - |x(s(g)X,(a))s(g) "1

- s(g)Uaj)+ (s(g)X(a)-|i(s(0))X(a)- - - n(s(^))s(fif) "1 - s(g))) 0

Enfin on définit un morphisme de ZG-modules ß : - ZG en posant
ß(e) p(e) - 1 pour tout eeE puis en étendant ZG-linéairement cette
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application. On vérifie immédiatement que ß(L) 0. On définit alors ß par
la condition ß7r ß.

4.5. Lemme. La suite r| est exacte.

Démonstration. On vérifie immédiatement que ßa 0 et sß 0. On

peut donc considérer rj comme un complexe de ZG-modules et pour démontrer

son exactitude il suffit de construire une homotopie contractante

0-+Â^M^ZG-^Z-+0.
G2 CTl CTO

On définit g0 en posant g0(1) 1.

Soit s: G -> E une section ensembliste de p telle que s(l) 1; on définit

<j1 en posant a1 I9eG
Y ngn{s(9))' Maintenant pour tout g g G et

geG

e g E on a \i(s(g)es(g\i(é))~ ^ 1 ; on peut donc définir une application
h: G x E -» A en posant

lh(g; e) s(g)es(g|a(e)) 1

On vérifie immédiatement à partir de cette définition que l'on a

(4.5.1) h(g;e1e2) h(g\i(e1);e2) + h(g;ei).

Comme tout élément x g F peut s'écrire x Y ng, eQe °ù
(g ; e)eGx(E\{l})

ng^eG Z et nge 0 pour presque tous les indices {g ; e\ on définit une

application g : F -> A en posant g(x) — Y ng, eHd ; e)-
(g-,e)

De la relation (4.5.1) on déduit que g(L) 0; on peut donc définir g2

par la condition <j2k g.
On vérifie sans peine que sg0 lz et g0b + ßu1 1ZG.

Pour vérifier que Gxß + ocg2 1M il suffit de vérifier que pour tout

g g G et e g E\{ 1} on a (g^ + ocg2)7i(ge) n(ge). Or on a

o^nige) + ao2n(ge) aiß(ge)Eoth(g ; é)

o^gßiejj + nXhigie)

^i(dÄe)-g) + n(s(g)es(g

^(^(e))- n(s(g)) + 7i(s(0)es(gn(e)) "x)

n(s(g)es(gn(e)) ~1 + s(^n(e)) - - ge) + iz(ge)
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7i((s(0)es(<7n(e)) "1 - n(sfe)e)s(0n(e)) "1 - s(g)e)

+ (s{g)e- n(s(g))e - - - '1

- s(0V(e)))) + n(0e)

n(ge).

Finalement pour vérifier que a2oc 1A il suffit de se rappeler que

5(1) - 1.

4.6. Supposons que l'extension de groupes

Ç:0 ^ U F i G ^ 1

est un autre représentant de [£] et soit

r\': 0 -> A M'A Z -» 0

l'extension de ZG-modules qui lui est associée.

4.7. Lemme. Les extensions q et q' sont équivalentes.
%

Démonstration. Par hypothèse il existe un morphisme de groupes
y : E -> E tel que le diagramme

Li T I I U
0 -> A-fE-fG-»•1

X |i

soit commutatif.
Il faut construire un morphisme de ZG-modules (p : M -> M' tel que

le diagramme

Li 91 Lgi IL
0 -> A -> M' -> ZG Z 0

a' ß' e

soit commutatif.
On peut étendre l'application y: E E en un morphisme de ZG-modules

y : F -> F et comme on a y(L) c= L', on définit cp par la condition
cpTT n'y. On vérifie immédiatement que cpa a' et ß'cp ß.

4.8. L'application (F est alors donnée en posant <I>(0) [q].
4.9. On construit maintenant une application

: Ext zG(Z ; Ä) —> e(G ; A).
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Soit [r|] g Ext|G(Z ; A) représentée par une extension de ZG-modules

rpO - A A M -h NVZ 0.

Choisissons un élément n e N tel que y(w) 1 et une section ensembliste

a : Im ß -> M de ß. La dérivation e Int (G ; N) vérifie la condition ydn 0.

On peut donc définir une application u : G -» M en posant m <idn ; autrement
dit pour tout g e G on a ßw(g) g * n — n.

L'application m n'est pas une dérivation, cependant pour tous gl9g2 s G

on a g1- u(g2) + tt(gq) — w(g1g2) e Ker ß. On définit alors une application

/: G x G ->• A en posant af(g1;g2) i • + - K9i9i)-
Finalement considérons l'ensemble E A x G muni de la loi de

multiplication donnée par

(«1 ; 0i (ö2 ; »a) (fli+0i • ai

4.10. Lemme. F est iw groupe.

Démonstration. On a ßw(l) — 0; donc il existe un unique élément eei
tel que oc(e) — u( 1). On vérifie facilement que l'élément (e ; 1) e E est

neutre en remarquant que pour tout g e G on a g • e + f(g ; 1) 0 et

£ + /(I ; q) o.

Maintenant pour tout g e G on a ß(g • w(g_1) + u(g)) 0; on peut donc
définir une application h : G -> A en posant

a%) 0 • "fe"1) +

On vérifie cette fois que l'élément est

l'inverse de l'élément (a; g) e E en remarquant que pour tout g e G on a

fig',g'1) - Ko) cet fig'1',g)-g'1-Kg) e.

Enfin pour vérifier l'associativité de la loi de multiplication, il suffit de

remarquer que pour tous g1, g2, g3 e G on a

fiai ; 92) + figxQi ; g3) - 9i •fis2 ; 93) fiai ; 0 •

4.11. Considérons la suite de groupes

Puisque*? + /(1;1) 0, l'application X définie en posant %(a) (a + e; 1)

est un morphisme de groupes. D'autre part il est immédiat que l'application p,

définie en posant \x(a ;g) g, est un morphisme de groupes.
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4.12. Lemme. E, est une extension de groupes telle que l'action de G

sur A induite par l'extension est égale à l'action donnée de G sur A.

Démonstration. Il est immédiat que la suite est exacte.

L'action de G sur A induite par l'extension est donnée par

M%Ha)) (0;g)Ma)(0;g)"1

(g a + g • e + f(g;l)-h(g)+f(g;g~g a+e-e+g• e +1)

g -a + e;1)

Ma-a)

car - e + g • e+ f(g; 1) - h(g)+ figig'1) 0 pour tout g eG.

4.13. On notera avec un ' les différents éléments de la construction
précédente obtenus à partir du choix d'un élément n' e N tel que y(n') 1

et d'une section ensembliste cr' : Im ß M de ß.

4.14. Lemme. Les extensions £, et sont équivalentes.

Démonstration. Il faut construire un morphisme de groupes 8 : E -» E'
tel que le diagramme

0->yt-^£-^G—»1
Li Si iL

K (i

soit commutatif.
Comme on a y(n — n') — 0 on peut trouver un élément me M tel que

ß(m) n — n'.

Maintenant pour tout ^eGona ß(w(#) — u'(g) — g-m + m) 0; on peut
donc définir une application k: G -> A en posant

ak{g) u(g) - u'(g) -g-m + m.

Par calcul direct on vérifie que pour tout g1, g2 e G on a

(4-14.1) (/ — /') {g il g 2) 9i ' Kg 2) + k(gx) — k(g±g2).

On définit alors 8 en posant

8 (a; g) (a

v-t en utilisant la relation (4.14.1) on voit que S est un morphisme de
roupes.
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On a 8À, X' car e' e + /c(l); enfin il est immédiat que p'8 p.

4.15. On notera maintenant avec une — les différents éléments de la
construction précédente obtenus à partir du choix d'une extension de ZG-modules

f| : 0

représentant [q].

4.16. Lemme. Les extensions Ç et \ sont équivalentes.

Démonstration. Il suffit de vérifier que s'il existe des morphismes de

ZG-modules cp et x|/ tels que le diagramme

O-^A^M-^N^Z^O
lAl cp I v|/ | lz

O^A^M^N^Z-^Oa ß y

soit commutatif, alors il existe un morphisme de groupes 5 : E -+ E tel que
le diagramme

0^A->E-^>G->1
UJ. 8| 4 iG

O-^A^Ë^G^lï f
soit commutatif.

Comme on a y(\J/(n) — n) — 0 on peut trouver un élément me M tel que
ß(m) \|f(n) — n.

Maintenant pour tout g e G on a ß(cpw(g) — û(g) — g • m-t-m) 0; on peut
donc définir une application k : G -» A en posant

àk(g) cpu(g) — u(g) — g • m + m

Par calcul direct on vérifie que pour tout gx, g2 e G on a

(4.16.1) {f-f)tel;g2) 9i Kg+ %i) - kteidi)

On définit alors 8 en posant

5{a; g) (a + k(g);g)

et en utilisant la relation (4.16.1) on voit que 8 est un morphisme de

groupes.
On a SL X car ë e + k(l) ; enfin il est immédiat que p8 p.
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4.17. On peut donc définir l'application Y en posant *F([r|]) [ç], et il

faut vérifier que f est la réciproque de <5.

4.18. Lemme. ¥<!> 1
e(G-,A)-

Démonstration. Si [ç] 6 e(G ; A) est représentée par l'extension de groupes

alors T([q]) R'] où q est l'extension de ZG-modules

0 -4 /) A M ZG A Z ^ 1

définie aux nos 4.3 et 4.4, et est l'extension de groupes

0^A^E'^G->1
qu'on va obtenir en appliquant la construction des nos 4.9, 4.10 et 4.11.

On peut choisir l'élément n 1 g ZG et définir l'application u : G -> M
en composant les applications du diagramme

G ^ E F A M

où T est une section ensembliste de p telle que x(l) 1 et i est l'inclusion
évidente, car pour tout g e G on a

ßw(g) f>Tiix(g) ßx(gr) px(gr) - 1 g - 1

L'application / : G x G -» yl qui permet de définir la multiplication du

groupe E' A x G satisfait donc la condition

(4.18.1) a/(0! ;02) "tel • x{g2) + x(gl)-x{g1g2)).

De plus comme /( 1) 0 dans F on a n(l) 0 donc (0 ; 1) est l'élément
neutre de E' et le morphisme X' est donné par X'(a) (a ; 1).

Maintenant pour tous g1, g2 e G on a

(4-18-2) Vftoi ',32) tigMd
En effet comme V-YidMd2Mdid2Y')1 on peut définir une application

f:GxG-*A en posant ;g2)r(gl)Teten tenant
compte de (4.18.1) et de la définition de a dans 4.4 on a

a(/(0i;02)-/(0i;02)) ttXf{g1;g2)-a.f(gl;g2)
AYdiMdiHdigiY1+
Tt{(t(gMg2Hgig2y1 - v«gMg2)Hgig2y1 -t
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+ ^(gM92)-^{gi)Hd2)-<gi))-(-^(gig2)Hg^2) 1

- <di92)))0.

Finalement pour montrer que les extensions de groupes t,' et £, sont
équivalentes, il faut construire un morphisme de groupes 8 : F -> E tel que le

diagramme

0 ^ A ^ E' ^ G ^ 1

1A i 8 l j 1G

0^A->E^G-+1X n

soit commutatif.
On pose 8(a ; g) X(à)T(g).

En utilisant la formule (4.18.2) on vérifie facilement que 8 est un
morphisme de groupes.

On a 8F X car x(l) 1 et il est immédiat que p8 jF.

4.19. Lemme. lExt|c(Z ;A).

Démonstration. Si [p] e Ext |G(Z ; A) est représentée par l'extension de

ZG-modules

p : 0 ->A^>M-?>N^Z
alors O^dDn]) ^(R]) [fi'] où é, est l'extension de groupes

0 4 i £ A G -4 1

définie aux nos 4.9, 4.10 et 4.11 et r\' est l'extension de ZG-modules

O^A^ M' ^ZG^Z^Q
définie aux nos 4.3 et 4.4.

Pour montrer que les extensions de ZG-modules rj' et r\ sont
équivalentes il faut construire des morphismes de ZG-modules cp : M' -> M et

\|/ : ZG -» N tels que le diagramme

0 i i M' zg A z -> o

1A l (pi ^ i i fz
0 ^ A -+ M N Z 0

a ß y

soit commutatif.
Soit F le ZG-module libre engendré par l'ensemble (^4 x G)\{(^ ; 1)}

sous-jacent au groupe E et soit n' : F -> M' la projection canonique. Soit
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encore u: G -> M l'application définie au n° 4.9. En posant cp(a ; g) a(a) + u(g)

et en étendant ZG-linéairement cette définition on obtient un morphisme de

ZG-modules cp : F - M tel que pour tout (a1 ; gx), (a2 ; g2) e E on a

cp((öi ; öl) (<a2 ; ^2)—; ô'i) * (^2 ; ^2)—(«1 ; ffi)) °

Il existe donc un morphisme de ZG-modules cp : M' -> M tel que
CpTl' (p

Maintenant en posant \|f(g) g • n, où n e N est l'élément choisi dans la

construction de rj, et en étendant Z-linéairement cette définition on obtient
un morphisme de ZG-modules \|/: ZG -» N.

On vérifie immédiatement que cpa' a, ßcp \|/ß' et y\|/ — s.

4.20. Il reste à montrer que l'application ¥ est un morphisme de groupes
abéliens.

Soit [r|J eExt|G(Z;A) (z'=l, 2) représentée pour la 2-extension de ZG-
modules

n;: o > A %AL h.Y,Y'> Z - 0.

On choisit un élément g N{ tel que yf(nf) — 1. Si m,-: G -> Mf est
donnée par la condition ß^g) g - nt - nt, on définit ft: G x G A
par la condition aJXôfi ; 9i)«"£(é? J + -On pose
£,- d x G et on munit cet ensemble de la loi de groupe induite par f.

Alors à l'extension iy est associée l'extension de groupes

0 + 4 i E,. * G 1

où A.;(a) {a+et;1). avec a;(e;) - «;(!),et \i((a;g) g.

4.21. La somme [r^] + [r|2] [V(r)1®ri2)A] est définie par le diagramme
commutatif suivant

fil © fi2 : 0 ->• A ® A V M, ® M2 JU iVi © iv2 L z © Z -* 0

L®a î î cp î TA

(fiiffifi2)A : 0 A © A * Mi © M2
a ßo

IV ->
y

z -> 0

VI M i i lz
v(fii®fi2)A: 0 -» A -> M

a
—»

ß
N ->

y
Z 0

où a — oq ® a2, ß — ßi © ß2, y y1 © y2, N est le produit fibré de
7 et À et M est le produit cofibré de ä et V.
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4.22. Soit H un groupe. On voit immédiatement que la construction des

nos 4.9, 4.10 et 4.11 se généralise en une correspondance entre les 2-exten-
sions d'un Zü-module M par un anneau unitaire commutatif Z sur lequel H
agit trivialement, et les extensions de groupes de M par H.

En particulier si on considère r\1 © rj2 comme une 2-extension de

Z[G x G]-modules de Z © Z par Z © Z, on peut lui associer l'extension de

groupes

1:0-*AxA-!*Ê-£>GXG->1
définie de la façon suivante :

L'élément n (n1; n2) e N1 © N2 satisfait y(n) (1 ; 1), donc si on pose
û u1 © u2 \ G x G -> M1 © M2 on a ßü(g ;h) (g; h) - n — n. On peut
alors définir /: (G x G) x (G x G) -> A x A par la condition

ä/((0i ; ht ); (g2;h2j) ü{gx; h2)+ t ; hj ; h2) - ;

On vérifie facilement qu'on a la relation

(4.22.1) f((dl ; h,);(g2 ; A2)) ; ; /#, ;

On pose E (A x A) x (G x G) et on munit cet ensemble de la loi de

groupe induite par /.
On a X(a ;b) ((a;b) + ê;( 1 ; 1)), où ê (e1 ; e2), et p((a ;b);(g; h))

4.23. Lemme. Les extensions de groupes t)1 x et § sont
équivalentes.

Démonstration. Compte tenu de la formule (4.22.1) l'application
5: E - E1 x E2, définie en posant

5 {(a-b);(g;h))((a ; ; A)),

est un morphisme de groupes tel que le diagramme

l : 0 -> A x A ^ É Ä G x G -> 1

x .4 -i ^ -l -i

^1 x ^2 '• 0 -* A x A E1 x E2 -* G x G -> 1

Xi X ^2 Ml X M2

soit commutatif.



EXTENSIONS DE MODULES 103

4.24. Maintenant à la 2-extension de ZG-modules (rj1©rj2)^ on associe

l'extension de groupes

définie de la façon suivante.

Comme y(n) A(l) l'élément n (n;l)eN et satisfait y(n) 1; donc

si on pose u0 iq © u2 : G -* Mx © M2 on a ßo^ofe) g * n — n. On peut

alors définir f0: G x G -+ A x A par la condition

â/o(0i ;02) wo(öb) + 0iB "ofei) ~ MOidi)

On vérifie facilement qu'on a la relation

(4.24.1) foi.9i '•> 9 2) — -

On pose £0 (A x A) x G et on munit cet ensemble de la loi de groupe
induite par f0.

On a X0(a ;b) ((a;b) + ê; 1) et p0((a ; b) ; g) g.

4.25. Lemme. Les extensions de groupes et sont équivalentes.

Démonstration. On a un diagramme commutatif

l :0-^ixiiËÂGxG^l
Lx^î <oî ÎA

lA: 0 A x A ^ Ë' G -> I

où Ë est le produit fibré de p et A; donc un élément de É est de la
forme a; b) ; (g ; g) ; g).

Compte tenu de la formule (4.24.1) l'application 8: F -» E0, définie en
posant

8((a ; b) ; (g ;g);g)

est un morphisme de groupes tel que le diagramme

lA: 0 ^ A x A Ë' G ^ 1

'
.1 .-i i§I I 1G

^„lO-t/lxA-tEo-tG^lXo Mo

soit commutatif.
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4.26. Finalement à la 2-extension de ZG-modules V^r^Sr^A) on associe

l'extension de groupes

^:0^A^E^G-+1
définie de la façon suivante.

Si on pose u v|/u0 : G -> M on a $u(g) g • n — n, donc on peut
définir / : G x G -> A par la condition

a/tei ; g2) "(0i) + 91 * %i) - uiGiQi) •

On vérifie facilement qu'on a la relation

(4-26.1) f(g1; g2)f1{g1 ; 02) + ;

On pose £ i x G et on munit cet ensemble de la loi de groupe
induite par /.

On a X(a) (a + Vê; 1) et p(a;g) g.

4.27. Lemme. Les extensions de groupes Vé,0 et é, sont équivalentes.

Démonstration. On a un diagramme commutatif

^0 :0-^AxA^EoG
V i ©o I 1 1g

V£,0 ; 0 -> 4 £'0 -? -» 1

*•0 ^0

où £q est le produit cofibré de X0 et V.

Compte tenu de la formule (4.26.1) l'application co:E0 -» E, définie en

posant co((a;b);g) (W(a;b);g), est un morphisme de groupes tel que
coX0 XV et pco p0. D'après la propriété universelle du produit cofibré

il existe donc un morphisme de groupe Ô:E'0 ^ E tel que 8X'0 X et

8co0 ©•

On peut donc considérer le diagramme

V^o :0->^^£'0^G->1
lAl 61 i 1G

£, :Q^A-+E-+G^lX 11
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dans lequel le premier carré est commutatif. Le deuxième carré est aussi

commutatif car on a p5co0 p'0co0 et co0 est surjectif car V est surjectif.

4.28. La relation d'équivalence entre extensions étant stable vis-à-vis des

produits fibrés et cofibrés, les résultats précédents donnent

^(Criil) + «FŒtiJ) [Vfê, xÇ2)A] [V|A]

[vç„] R] MCV(n,©n2)A]) ^([r,,] + [ll2]).
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