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EXTENSIONS DE MODULES
ET COHOMOLOGIE DES GROUPES

par Pierre-Paul GRIVEL

INTRODUCTION

Soit M et N deux modules a gauche sur un anneau R. Il est bien
connu que le groupe Extk(N ; M) classe, a équivalence pres, les n-extensions
de M par N.

D’autre part soit G un groupe et 4 un groupe abélien sur lequel
G agit a gauche. On définit le n-ieme groupe de cohomologie de G a
coefficients dans 4 comme étant le groupe HYG; A) = Ext%4(Z; A) ou Z
est considéré avec sa structure de ZG-module trivial; autrement dit
on définit les groupes H*(G;A) comme étant les dérivés du foncteur
Hom,4(Z; A) = A°.

Pour calculer ces groupes on utilise en général un complexe standard,
a laide duquel on obtient une interprétation des premiers groupes de
cohomologie.

Il paraissait intéressant d’obtenir directement 'interprétation de H(G ; A)
et H¥G;A) a partir de linterprétation de Extiy(Z;A) et Ext2Z4(Z; A),
sans avoir recours au complexe standard.

1. RAPPELS SUR LES EXTENSIONS

1.I. Soit R un anneau. Soit M et N deux R-modules & gauche. Une
n-extension de M par N est une suite exacte de R-modules

On—1

E:0-M3E B3E, 3.5 E3NS0.

Deux n-extensions & et & de M par N sont élémentairement
équivalentes s’il existe n morphismes de R-modules v:: E; —» E; tels que
Vi = o, agy; = Yieq® pour i = 1,2,.,n—1, et aly, = a,, ou n mor-
phismes de R-modules v;: E} — E; tels que y,o = q, oY; = Yi+ 10 pour
i=1,2,.,n—1,et oy, = o

n-
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Deux n-extensions & et & de M par N sont alors équivalentes s’il
existe une suite d’équivalences élémentaires reliant § a &'

On remarquera que dans le cas n = 1 I’équivalence élémentaire est déja
une relation d’équivalence car le morphisme y est alors un isomorphisme.

On notera [£] la classe d’équivalence de I’extension &.

1.2. Soit & une n-extension de M par N. Soit u: M - M' et v:N' - N
deux morphismes de R-modules.

Par produit cofibré on définit ’extension ug de M’ par N et par produit
fibré on définit 'extension {v de M par N'.

1.3. Soit g et & deux n-extensions de M par N. Notons V: M @ M — M Pap-
plication codiagonale définie par V(im,;m,) = m; + myet AAM > M @ M
lapplication diagonale définie par A(m) = (m;m). La somme de Baer de
[E] et [£'] est définie en posant [§] + [£'] = [V(EDBEHA].

Muni de cette opération 'ensemble des classes d’¢équivalence des n-exten-
sions de M par N est un groupe abélien.

1.4. 1l est bien connu que les classes d’équivalence des n-extensions de M
par N sont classées par le n-iéme foncteur dérivé ExtRj(N ; M) du foncteur
Homg(N ; M).

1.5. Considérons maintenant un groupe G et un groupe abélien A.

Une extension de 4 par G est une suite exacte de groupes
£0>ADBEBLGo1.
Si & et & sont deux extensions de A par G alors £ est équivalente

a & ¢’il existe un morphisme de groupe y:E — E' tel que YA = A\ et
Wy = . On notera [£] la classe d’équivalence de I'extension &.

1.6. Si & est une extension de A4 par G on définit un morphisme de
groupes 0: G — Aut (A4) en posant, pour tout g € G et a € A4,

AB(g) (a) = s(g)Ma)s(g) ™"

ou s: G — E est une section ensembliste de p. Ainsi le groupe abélien A
est muni d’une structure de ZG-module a gauche.

1.7. Si le groupe A est déja muni d’une structure de ZG-module a gauche
on désignera par e(G; A) I'ensemble des classes d’¢quivalence des extensions
de A par G telles que l'action de G sur A induite par lextension soit
égale a l'action donnée de G sur A.




.
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L’ensemble ¢(G ; A) n’est pas vide car il contient la classe d’équivalence
de I'extension

0-A4A5A4xG5G—1
donnée par le produit semi-direct.

1.8. Muni de la somme de Baer I'ensemble ¢(G;A) a une structure de
groupe abélien.

1.9. L’extension donnée par le produit semi-direct est scindée. Si
6:G — A x G est une section de ™ on a nécessairement o(g) = (f,(9);9)
ou f.(g)e A. Soit o, et o, deux sections de 7; on dit que o, est A-conjuguée
a o, sil existe un ¢élément ae A tel que, pour tout ge G, on a
c,(9) = (a)o,(g)(a)”t. On notera [c] la classe de A-conjugaison de la
section o et on désignera par h(G ; A) 'enserible des classes de 4-conjugaison
des sections de .

1.10. Si o, et o, sont deux sections de m on définit la section o, + o,
en posant (o, +6,) (9) = (f5,(9)+ £,,(9); g)- Cette opération induit sur h(G ; A)
une structure de groupe abélien.

2. DERIVATIONS ET EYTENSIONS

2.1. Soit G un groupe. L’anneau de groupe ZG est muni d’une augmen-

tation ¢: ZG — Z donnée par () n,g) = Y n,. Si on considére Z avec
geG geG

sa structure de ZG-module trivial & gauche, & est un morphisme de
ZG-module et on obtient une extension de Z.G-modules

051652657 -0

ou Iidéal d’augmentation IG est engendré, comme Z-module, par ’ensemble
lg —11geG\{1}}.
2.2. Soit A un ZG-bimodule.

Une dérivation de G dans A4 est une application f:G — A telle que, pour
tout g, h e G, on ait f(gh) = f(g)-h + g- f(h).

L’ensemble des dérivations de G dans A forme un groupe abélien noté

- Der (G; A).

Pour tout a € 4, 'application f,: G - A définie par f,(9) =g:-a—a-g
est une derivation, appelée dérivation intérieure de G dans A.
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L’ensemble des dérivations intérieures de G dans 4 forme un sous-groupe
de Der (G ; A) noté Int (G ; A).

2.3. On suppose dorénavant que le groupe G agit a gauche sur le groupe
abélien A.

On considere alors A comme un ZG-bimodule en faisant agir G tri-
vialement a droite sur A. Une dérivation de G dans A est donc une
application f:G — A qui satisfait la condition f(gh) = g- f(h) + f(g). On
en déduit que f(1) = 0.

De plus, pour tout a e A4, la dérivation intérieure f,: G — A est définie
par f,(9) = g-a — a

24, LEMME. Le groupe Der(G;A) est isomorphe au sous-groupe de
Hom,(ZG ; A) formé des morphismes de groupes abéliens f:2.G — A qui
satisfont la condition f(xy) = f(x)e(y) + x+ f(y) pour tous x,yeZG.

Démonstration. Si  feDer(G;A4) et x = Y ngeZG on définit

geG

f:ZG - A en posant f(x) = Y n,f(g). Inversément si f e Hom,(ZG ; A)

geG
satisfait la condition de I’énoncé et si j: G — ZG est I'inclusion évidente, on

définit une dérivation f en posant f = f oj.

2.5. PROPOSITION. Il existe un isomorphisme de groupes abéliens
®: Der (G; A) > Hom,,(IG; A) .
Si feDer(G;A4) ona o(f)(g—1) = f(g) pour tout geG.

Démonstration. Soit f € Der (G; A); posons o(f) = feioui:IG - ZG
est I'inclusion. Si x € ZG et y € IG on a, d’apres le lemme 2.4,

o(f) (xy) = fxy) = fXEQ) + x- f() = x-o(f) ()3

donc o(f) est un morphisme de ZG-modules. De plus, pour tout ge G,

ona (f)(g—1) = flg—1) = flg — 1) = f(g).

Définissons maintenant une application
o : Hom,4(IG; A) — Der (G; A4) .

Si ue Hom,,(IG; A) et g € G posons o'(u) (g) = u(g—1). Pour tout g, he G
on a

@) (gh) = ulgth—1)+(g—1)) = g-uh—1) + ug—1)

= g-o'Wh) + o' (9).

I
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Donc @'(u) est une dérivation de G dans A. On vérifie immediatement que

(DI(D == 1Der(G;A) et que (D(D/ = 1H0mZG(1G;A) o

2.6. On rappelle que h(G;A) désigne le groupe abélien des classes de
A-conjugaison des sections de I'extension de groupes donnée par le produit
semi-direct 4 x G.

PROPOSITION. I] existe un isomorphisme de groupes abéliens

Der (G; A)

F:hG;A e
G4 =~ 146G 4)

Démonstration. 1l résulte de 1.9 qu’a toute section ¢: G - A x G on
peut associer une application f;: G — A telle que, pour tout ge G, on a
o(g9) = (f(9); g). Compte tenu de la loi de multiplication du produit semi-
direct et du fait que o est un morphisme de groupes, on vérifie que
f. e Der (G; A).

Si ¢’ est une section A-conjuguée a o, il existe un élément a € A tel que
co'(g9) = Wa)o(g)ua)~'; on en déduit que (f,(9);9) = (a+ fo(9)—g - a;g) donc
que f, — fo €lInt(G; A).

On définit alors application F en posant F([c]) = [f,], ou [f,] désigne
Der (G; A)

Int (G; A)

Il est immédiat de vérifier que F est un morphisme de groupes et que F

est bijective.

la classe de f, dans le groupe quotient

3. LE GROUPE HY(G; A)

3.1. Soit G un groupe. Comme d’habitude on munit Z de sa structure de
ZG-module 4 gauche trivial. De plus soit 4 un ZG-module a gauche; on
considere A comme un ZG-bimodule en faisant agir G trivialement sur la
droite de A.

On se propose de démontrer I'existence d’un isomorphisme de groupes
abéliens

Der (G; A
0. Der (G 4)

A 1 7.
‘Tt G A) — Bxtz4(Z; A).

Compte tenu de la définition des groupes H*(G ; A) et de la proposition 2.6,
on obtient alors le résultat classique suivant.
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3.2. THEOREME. Il existe un isomorphisme de groupes abéliens

HYG; A) = hG; A).

3.3.  Pour construire ’application ® on commence par considérer I’extension
de ZG-modules

0:0>IGS5ZGS5Z 50,

_ Der (G ; A) , , f e . 3
Soit [ f] € —————— représentée par une dérivation f € Der (G ; A); d’aprés
Int (G; A)
la proposition 2.5 on peut associer a f un morphisme f = o(f)
€ Hom,4(IG; A).
En faisant le produit cofibré de © par f on obtient I'extension de
Z.G-modules

f:0-43Fb7z50.

Le ZG-module F est le quotient de ZG x A par le sous-module engendré
par I'ensemble {(i(x); — f (x)) | x€IG}. Si m: ZG x A — F est la projection
canonique, les morphismes o et [ sont définis en posant afa) = w(0;a)
et Br(x; a) = &(x).

Si f"eDer(G;A) est un autre représentant de [f] on lui associe de
la méme fagon I’extension de ZG-modules

fo.0-a5Fr87z50.

3.4. LEMME. Les extensions f~ 0 et f'O sont équivalentes.

Démonstration. 1l faut construire un morphisme de ZG-modules 6: F — F’
tel que le diagramme

70—->7A_2>F_&Z_,0
BT N R
OQA;,)F'?ZAO

soit commutatif.
Par hypothese il existe be A4 tel que f' — f = f, ou f, € Int(G; A).
On définit alors un morphisme de ZG-modules

A'ZG x A—>ZG x A

en posant A(x;a) = (x;a—x-b).
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Si x € IG on peut écrire x = Y. n(g—1) si bien quen utilisant la propo-
geG

sition 2.5 on a

x-b =Y nfg-b—b) = Y n,fi(g) = Y, n,folg—1)

geG geG geG

= 5 (3 nlg—1) = fx).

geG

On a donc A(x; — f(x) = (x; — f(x)— fo(x)) = (x; — f(x)) et on définit 3
par la condition T'A = om.
On vérifie immédiatement que do = o' et f'0 = B.

3.5. L’application ® est alors donnée en posant O([ f]) = [ ]7 0].
3.6. On construit maintenant une application

Der (G; A)

W Exti(Z: A) > 2
XtzolZ; 4) = Int (G ; A)

Soit [£] € Ext34(Z ; A) représentée par une extension de ZG-modules
E:0ADSESZ 0.

Choisissons un ¢lément e € E tel que we) = 1 et considérons la dérivation
f.elInt (G; E).

Comme on a pf, = 0 on peut définir une application f°: G — A par
la condition Af° = f,.

37. LeMME. f°eDer(G;A) et [f¢] ne dépend pas du choix de e.

Démonstration. Pour tous g,he G on a

Af%gh) = (gh)-e —e =g-(h-e—e) +g-e — e
= g-Afh) + Lfg)
= Mg- fh) + f49).
Comme A est injectif il en résulte que f°e Der (G; A). Soit ¢ € E tel que
We') = 1; puisque ple—e') = 0 il existe b € 4 tel que AMb) = e — ¢
Considérons la dérivation f; € Int (G ; A). Pour tout g€ G on a
MfE=f)(g) = (g-e—e) — (g- € —¢)
= g+ Mb) — Mb)
= Mg-b—b) = Lfi(g).
Ainsi f¢ — f¢ e1Int(G; A) et par suite [ £°] ne dépend pas du choix de e.
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3.8.  Supposons maintenant que ’extension de ZG-modules
£:0 > AL E S 7Z 50

est un autre représentant de [£].
En choisissant un élément ¢’ € E’ tel que p'(¢’) = 1 on définit une déri-
vation f¢ € Der (G; A).

39. LeMME. [°¢ — f¢elnt(G;A).

Démonstration. Les extensions & et &' étant équivalentes, il existe un
morphisme de ZG-modules y: E — E’ tel que le diagramme

05 ASEBSZ >0

1,0 vl 11,
0—>A7,>E’L—,>Z——>O

soit commutatif.
Comme p'(y(e)—¢') = 0, il existe b e A tel que X' (b) = v(e) — €.
Considérons la dérivation f, € Int (G ; A). Pour tout g€ G on a
YMf= ) (g) = YAfg) — ¥ [ (9)
= 1lg-e—e) = (g-¢—e)
= g-(v(e)—¢) — (v(e)—¢)
— Mg -b—b)
= YAS(9) -

Comme vy est un isomorphisme et A est injectif il en résulte que
fe — f¥elnt(G; A).

3.10. On peut donc définir Papplication ¥ en posant W([£]) = [f¢], et il
faut vérifier que W est la réciproque de O.

Int (G; A)
Der (G; A)

Démonstration. Si [ f] em est représentée par f € Der (G; A)

alors YO([ f]) = Y([ f 0]) ou f0 est 'extension de ZG-modules
0-43F5z 50

~ décrite au n° 3.3.
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~

Par définition du produit cofibré de 6 par f il existe un morphisme
de ZG-modules v: ZG — F, défini par y(x) = m(x;0), tel que le diagramme

0 - IG > 2ZG S5 Z — 0

iyl L1y
0—>A-;> F —B>Z—->0

soit commutatif.

L'élément e = m(1;0) e F vérifie la condition P(e) = 1; donc ¥([ ]7 0]
est représentée par la dérivation f°€e Der (G; A4) telle que, pour tout g € G,
on ait af%g) = g-e —e = mg—1;0).

Or on a f¢ = f; en effet, compte tenu de la proposition 2.5 on a,
pour tout g € G,

a(fe—f)(g) = afig) — aflg—1)
= afg) — y(ig—1)
= m(g—1;0) —m(g—1;0) = 0.

3.12. LEMME (I)\Il = 1Ext%G(Z;A) .

Démonstration. Soit [E] e Extl.(Z; A) représentée par lextension de
Z.G-modules

£:0 5 ASESZ S0

et choisissons un élément ¢ € E tel que p(e) = 1; on a alors ®Y([E]) = [ ]7%6].

I1 s’agit donc de démontrer que les extensions & et ]7 °0 sont équivalentes;
pour cela il faut construire un morphisme de ZG-modules 0: E — F tel
que le diagramme

1,0 9/ l1g
O—)A?F—E)Z—)O

soit commutatif.
Si ue E on a p(u—p(u)e) = 0; on peut donc définir un morphisme de
groupes abéliens v: E — A tel que Av(u) = u — p(u)e pour tout u € E.

Définissons alors & en posant 6(u) = n(u(u);u(u)). Il faut vérifier que 6
est un morphisme de ZG-modules; orsige Getue E on a

g-0(u) — 8(g-u) = n(uw) (g—1);9 - v(u)—v(g - w).
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Mais

Mg - v(w)—v(g - ) = g - (u—pwe)—(g - u—pue)
= — Wu)(g-e—e)
= — pWf4g)
= M—pw) fAg—1).

Il en résulte que g - &(u) — d(g - u) = 0.
Finalement on vérifie immeédiatement que oA = a et o = M.

3.13. 1l reste a montrer que I'application ¥ est un morphisme de groupes
abéliens.

Soit [€;] € ExtLo(Z; A) (i=1, 2) représentée par I'extension de ZG-mrodules
£:0 > ASE 572 50.
On choisit un élément e; € E; tel que pfe;) = 1 et on considere la
dérivation [ € Der (G; A) définie par A, f(g) = g-e; — e;.
On a alors W([&,]) + W([&.]) = [f] + [f*] = [/ + /=1

Maintenant [£,] + [§,] est représentée par I'extension de ZG-modules
& = V(E;DEL)A et on a le diagramme commutatif suivant

A1 @ A2 p1 @ p2
0O - ApA - E, DPE, - Z&&Z - 0
Vi vl llz@z
(3.13.1) 0 — A - E e 797 - 0
1,1 - o1 TA
0 - A v Es — Z - 0.
0 Ko .

On choisit un élément e, € E, tel que pole,) = 1 et on considére la
dérivation f°° € Der (G ; A) définie par Ay f*(g) = g-eq — eq.
On a alors W([§,] + [&.1) = [f*].

3.14. LemMME. f* 4+ f — f®elnt(G;4).

Démonstration. Comme p(y(e; ; e,)—8(e)) = 0, il existe un élément a € 4
tel que AMa) = y(e;e,) — O(ey). Considérons la dérivation f, € Int (G ; A).
Pour tout g € G on a, compte tenu du diagramme (3.13.1),

Mfeg)+ f(g)— f(9)— fulg)) = 0.
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4. LE GROUPE H*(G; A)

41. On reprend les hypothéses de 3.1. On se propose de démontrer
Pexistence d’un isomorphisme de groupes abéliens

®:e(G;A) - Extz4(Z; A).

Compte tenu de la définition des groupes H*(G; A) on obtient alors le
résultat classique suivant.

4.2. THBOREME. Il existe un isomorphisme de groupes abéliens
H*G; A) = e(G;A).
4.3. On va construire Papplication .

Soit [E] € e(G ; A) représentée par I'extension de groupes
£:0 >4 5EBG 1.

Notons F le ZG-module libre engendré par 'ensemble E\{1}; autrement

dit x € F si et seulement six = ) p.e, ou p,€ ZG et p, = 0 pour presque
ecE\{1}

tous les indices e. On fait la convention que p; 1 = 0 dans F.

Soit L le sous-ZG-module de F engendré par les ¢lements de F de
la forme e;e, — p(ey) e, — e; ou e, e, € E. On notera en particulier que les
¢léments de la forme — p(e)e ™! —e et — ple ) -e —e 1, ou eeE, sont
dans L.

On pose M = F/L et on note n: F - M la projection canonique.

44. On considére maintenant la suite de ZG-modules
no-43M5352635272 0.

Le morphisme ¢ est Paugmentation; on va définir les deux autres
morphismes.

Pour tout ae A on pose a(a) = m(A(a)), mais il faut vérifier que o est
un morphisme de ZG-modules. Soit s: G — E une section ensembliste de .
Pour toutge Getac A on a
g - a) — g+ ofa) = n(s(g)Ma)s(g)"* —g - Ma))
= (s(9Ma)s(g) " — n(s(g)Ma))s(g) ~*
—s(g)Ma)+ (s(9)Ma) — u(s(@)Ma)— s(9) — (— u(s(9)s(g) " —s(g)) = 0.
_ Enfin on définit un morphisme de ZG-modules B: F — ZG en posant
Ble) = pe) — 1 pour tout ee E puis en étendant ZG-linéairement cette
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application. On vérifie immédiatement que B(L) = 0. On définit alors P par
la condition B = B.

45. LEMME. La suite m est exacte.

Démonstration. On vérifie immédiatement que Po = 0 et ef = 0. On
peut donc considérer n comme un complexe de ZG-modules et pour démontrer
son exactitude il suffit de construire une homotopie contractante

0-AaS5Mbz6572 0.
On définit o, en posant oy(1) = 1.
Soit s: G — E une section ensembliste de p telle que s(1) = 1; on définit

G, en posant G, |:Z ngg} = > n,n(s(g)). Maintenant pour tout ge G et

geG geG
ecE on a p(s(g)es(gu(e))”') = 1; on peut donc définir une application
h: G x E — A en posant

Mhi(g;e) = s(g)es(gn(e) .

On vérifie immediatement a partir de cette définition que 'on a

4.5.1) hg:ese;) = higu(e,);es) + h(g:ey).

Comme tout €lément x e F peut sécrire x = > n, .ge ou
(9; ©)eGX(E\{1})
n,.c€4 et n,, =0 pour presque tous les indices (g;e), on définit une

application 6: F — A en posant o(x) = ), n, Jh(g;e).
(g;e)

De la relation (4.5.1) on déduit que o(L) = 0; on peut donc définir o,
par la condition o,m = G.

On vérifie sans peine que €6, = 1, et 6o + Po; = 1,45.

Pour vérifier que o,p + ac, = 1, il suffit de vérifier que pour tout
ge Getee E\{1} on a (o,B+ac,)n(ge) = n(ge). Or on a

o1Bn(ge) + ao,m(ge) = o,B(ge)+ah(g;e)
= o4(9B(¢)) +Mh(g ;s €)
= 0;(gu(e)—g)+n(s(g)es(gnle) ')
= n(s(gu(e) —n(s(g)) + m(s(g)es(grle) )
= n(s(g)es(gu(e) ~ ' + s(gule)) — s(g) — ge) +(ge)
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= n((s(g)es(gr(e)) "t — n(s(g)e)s(gn(e) ~* —s(g)e)
+ (s(g)e— p(s(g))e —s(g)—(— u(s(gn(e))s(gn(e) "
— s(gn(e)))) +nlge)

= m(ge) .

Finalement pour vérifier que oc,u = 1, il suffit de se rappeler que
s(1) = 1.

4.6. Supposons que I'extension de groupes
£:0 > AL ESG1
est un autre représentant de [£] et soit
n':OHAE;M'E;ZG—iZaO

Pextension de ZG-modules qui lui est associée.

4.7. LEMME. Les extensions m et m sont équivalentes.
€

Démonstration. Par hypothese il existe un morphisme de groupes
v: E —» E tel que le diagramme

O—)A—%E—“)G—)l
1y vl I 1g
OﬂA?E'?G—)I

soit commutatif.

Il faut construire un morphisme de ZG-modules ¢: M — M’ tel que
le diagramme

0 ASM272657 50

Iyl ol 1z6) 1 1g
OHA?M'E,)ZG—S»Z—)O
soit commutatif.

On peut étendre I'application y: E — E’ en un morphisme de ZG-modules
Y:F—> F' et comme on a y(L) = L', on définit ¢ par la condition
¢m = 7'y. On vérifie immédiatement que oo = o et f'p = P.

4.8. L’application @ est alors donnée en posant d([E]) = [M].
49. On construit maintenant une application

W:Extz4(Z; A) — e(G; A) .
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Soit [M] € Ext34(Z ; A) représentée par une extension de ZG-modules
T]ZO—)A&M—&N—LZ—)O.

Choisissons un ¢élément n e N tel que y(n) = 1 et une section ensembliste
o:Im B — M de B. La dérivation d, € Int (G ; N) vérifie la condition yd, = 0.
On peut donc définir une application u: G - M en posantu = od,; autrement
dit pour tout ge G on a Pu(g) = g+n — n.

L’application u n’est pas une dérivation, cependant pour tous ¢g,,9,€ G
on a g;-ulg,) + u(g,;) — ulg,g,) € Ker B. On définit alors une application
f:G x G — Aenposant af(gy;9,) = gy ulgs) + u(g:) — u(g:19,).

Finalement considérons ’ensemble E = A x G muni de la loi de multi-
plication donneée par

(ay;91) (az392) = (ay+9g, - ar+ 1(91:92)39192) -

4.10. LEMME. E est un groupe.

Démonstration. On a Pu(l) = 0; donc il existe un unique élément e A
tel que afe) = — u(l). On vérifie facilement que I'¢lément (e;1)e E est
neutre en remarquant que pour tout geG on a g-e + f(g;1) = 0 et
e+ f(1;9) = 0.

Maintenant pour tout ge G on a B(g-u(g~')+u(g)) = 0; on peut donc
définir une application h: G - A en posant

ah(g) = g-ulg™") + u(g).

On vérifie cette fois que Iélément (—g '-a—g '-h(g);9 ')eE est
I'inverse de I’élément (a;g) € E en remarquant que pour tout ge G on a

flg;97") — hig) = eet flg7'59) — g™ " - hig) = e
Enfin pour vérifier I’associativité de la loi de multiplication, il suffit de
remarquer que pour tous g,,g,,gs€ Gon a

fg1:92) + f(9192:93) — 91* f(92593) — f(9159293) = 0.

4.11. Considérons la suite de groupes
&:O—»ALE—‘;G—)I.

Puisque e + f(1;1) = 0, 'application A définie en posant Ma) = (a+e; 1)
est un morphisme de groupes. D’autre part il est immédiat que 'application p,
définie en posant wa;g) = ¢, est un morphisme de groupes.




EXTENSIONS DE MODULES 97

412. LEMME. & est une extension de groupes telle que laction de G
sur A induite par lextension est égale d laction donnée de G sur A.

Démonstration. 11 est immédiat que la suite est exacte.
L’action de G sur A4 induite par I’extension est donnee par

MO(9) (@) = (0;9)Ma) (0;9)"
= (g-a+g-e+flg;)—hg)+fg;9 );99™")
= (g-ate—etg-e+flg;)—Hg)+flg;97");1)
= (gra+e;l)
= Mg - a)
car —e +g-e+ flg;1) — hlg) + f(g;9~ ') = 0 pour tout g € G.
4.13. On notera avec un ' les dittérents ¢léments de la construction

précédente obtenus a partir du choix d’un €lément n' € N tel que y(n) = 1
et d’une section ensembliste o’: Im B - M de B.

4.14. LEMME. Les extensions & et &' sont équivalentes.
Démonstration. 11 faut construire un morphisme de groupes 6: E — E’
tel que le diagramme
0 - A4 X ES5 G o1
S A

0 - 4 - E’ 2 G —» 1
soit commutatif,

Comme on a y(n—n) = 0 on peut trouver un élément me M tel que
Bim) = n — n'.

Maintenant pour tout g€ G on a B(u(g)—u'(g)—g - m+m) = 0; on peut
donc définir une application k: G — A4 en posant

ak(g) = ulg) — w(g) —g-m + m.
Par calcul direct on vérifie que pour tout g,, g, € G on a
(4.14.1) (f—=f)G1:92) = g1+ klg,) + k(g1) — k(g192) -
On définit alors & en posant
da;g) = (a+kig);g)

t en utilisant la relation (4.14.1) on voit que & est un morphisme de
groupes.
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On a 6A = A car ¢ = e + k(1); enfin il est immédiat que p's = p.

4.15. On notera maintenant avec une — les différents éléments de la cons-
truction précédente obtenus a partir du choix d’une extension de ZG-modules

A0 AaSMENLZ SO

représentant [n].

4.16. LEMME. Les extensions £ et & sont équivalentes.

Démonstration. 11 suffit de vérifier que s’il existe des morphismes de
Z.G-modules ¢ et s tels que le diagramme
0A43MBENDZZ S0

Ll el Wl oLl
0> A > M — N s Z - 0
* B
soit commutatif, alors il existe un morphisme de groupes &: E — E tel que
le diagramme
0> AS5ESG 1

1,1 o8} I 1g
0> A E—>G—1
r 2

soit commutatif.
Comme on a y((n)—n) = 0 on peut trouver un élément me M tel que

Bim) = V(n) — 7. _
Maintenant pour tout g € G cn a B(ou(g)—u(g)—g - m+m) = 0; on peut
donc définir une application k: G — A en posant
aklg) = Qulg) — ulg) —g-m + m.

Par calcul direct on vérifie que pour tout g;, g, € G on a

(4.16.1) (f =) (g1:92) = g1 kga) + k(g1) — k(g195) -

On définit alors 6 en posant

3as;g) = (a+kig);9)

et en utilisant la relation (4.16.1) on voit que & est un morphisme de

groupes.
On a A = A car é = e + k(1); enfin il est immédiat que ud =
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417. On peut donc définir application ¥ en posant ¥([n]) = [E], et 1l
faut vérifier que P est la réciproque de ®.

4.18. LEMME. Y@ = l,6.4-
Démonstration. Si[E] € e(G; A) est représentée par I'extension de groupes
E:0 - A LELG o1
alors YO([£]) = W([n]) = [&'] ou m est 'extension de ZG-modules
0> A>SMS2ZG > Z > 1
définie aux n° 4.3 et 4.4, et &' est I'extension de groupes
0 A5 ELG -1

quon va obtenir en appliquant la construction des n® 4.9, 410 et 4.11.
On peut choisir ’élément n = 1 € ZG et définir 'application u: G - M
en composant les applications du diagramme

T i T

G > E—>F > M,

ou t est une section ensembliste de p telle que t©(1) = 1 et i est I'inclusion
evidente, car pour tout g € G on a

Bu(g) = Britlg) = P(g) = plg) — 1 =g — 1.
L’application f:G x G — A qui permet de définir la multiplication du

groupe £’ = A x G satisfait donc la condition

(4.18.1) af(g1592) = gy * Wg2)+(g,)—g19,)) -

De plus comme i(1) = 0 dans F on a u(l) = 0 donc (0;1) est I’élément
neutre de £’ et le morphisme A’ est donné par A'(a) = (a; 1).
Maintenant pour tous g,, g, € G on a

(4.18.2) Mf(g1592) = tg1)Hg2)T(g19,) "

En effet comme p(t(g,)t(g,)t(g,9,)” ') = 1 on peut définir une application

f:G x G- A en posant Af(g,;9,) = 1g,)ugx)(g1gs)" " et en tenant
compte de (4.18.1) et de la définition de o dans 4.4 on a

Af(91392)— (915 92) = nhf(g1;92)—f(g:;95)
= n('c(g )ug2)Tg,19,) " — g1ug.)—tg,)+ T(ngz))
= m((t(g)tg2)1g:92) " — n(t(g)t(g2))(g192) " —1(g,)t(g,))
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+ (g )ugs)— n(t(g,))e(g2) — g1))— (— W(t(g192))t(g19,) ~*
- T(9192))) = 0.

Finalement pour montrer que les extensions de groupes & et & sont
équivalentes, il faut construire un morphisme de groupes 6: E' — E tel que le
diagramme

0 A5 E S G
1,1 o] 1 1g
O—>A7>E7G—>1

soit commutatif.

On pose d(a; g) = Ma)t(g).

En utilisant la formule (4.18.2) on vérifie facilement que & est un
morphisme de groupes.

On a 80" = A car ©(1) = 1 et il est immédiat que pd = .

419 LEMME. (DlP = 1Ext%G(Z;A)'

Démonstration. Si [n] € Extz4(Z; A) est représentée par Pextension de
Z.G-modules

no-A43ME3NZ 50
alors ®¥Y([n]) = O([E]) = [M'] ou & est Pextension de groupes
0->A45ES5G -1
définie aux n® 4.9, 4.10 et 4.11 et n’ est 'extension de ZG-modules
045 ME57265272 50

deéfinie aux n® 4.3 et 4.4.

Pour montrer que les extensions de ZG-modules n' et n sont équi-
valentes il faut construire des morphismes de ZG-modules ¢: M’ — M et
r: ZG — N tels que le diagramme

OaAiM'E)ZG—iZ—»O

b ol ¥l 11y
O—>A7M—>N7Z—+O

soit commutatif.
Soit F' le ZG-module libre engendré par l'ensemble (4 x G)\{(e;1)}
sous-jacent au groupe E et soit n': F' - M’ la projection canonique. Soit
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encore u: G — M I'application définie au n°4.9. En posant ¢(a; g) = afa)+u(g)
et en étendant ZG-linéairement cette définition on obtient un morphisme de
ZG-modules ¢@: F' — M tel que pour tout (a;;¢,),(a5;9,) € Eona

(_P((al;gl) (ay;92)—wag;94) - (az;gz)_(a1;g1)) =

Il existe donc un morphisme de ZG-modules ¢: M’ — M tel que

or' = ©.

Maintenant en posant \f(g) = g+ n, ou ne N est 'élément choisi dans la
construction de 1, et en étendant Z-linéairement cette définition on obtient
un morphisme de ZG-modules : ZG — N.

On vérifie immédiatement que oo’ = o, fo = YB et y = &

4.20. 1l reste a montrer que l'application ¥ est un morphisme de groupes
abéliens.

Soit [n;] € Extz4(Z; A) (i=1, 2) représentée pour la 2-extension de ZG-
modules

n:0 - A3MENSBZSO.

t

On choisit un élément n; e N; tel que y,(n;) = 1. Si u;: G — M, est
donnee par la condition Bu(g) = g+n;, — n;, on définit f;:G x G - A4

par la condition o;f(g;;95) = wilg1) + g1 - udgs) — ufgig,). On pose
E; = A x G et on munit cet ensemble de la loi de groupe induite par f;.
Alors a I'extension m; est associée I’extension de groupes

ou Afa) = (a+e;; 1), avec afe;) = — ufl), et pfa;g) = g.

421. Lasomme [n,;] + [n,] = [V(n,®mn,)A] est définie par le diagramme
commutatif suivant

M ®n, 0> A@®A435MOM, >N BN, H>Z0Z - 0

lioal Lyom, T ¢ 1 TA

M@NJA 10 > 404 2 M,®M, > N - Z -0
vi vl Iyl l1g

Vi, ®&nyAa: 0 - A4 - M 2 N - Z -0

Qﬁl t=o, Doy, B=2B BB, 7= Y1 D v,, N est le produit fibré de
et Aet M est le produit cofibré de o et V.
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4.22. Soit H un groupe. On voit immédiatement que la construction des
n®> 4.9, 410 et 4.11 se généralise en une correspondance entre les 2-exten-
sions d’un ZH-module M par un anneau unitaire commutatif Z sur lequel H
agit trivialement, et les extensions de groupes de M par H.

En particulier si on considére m; @ m, comme une 2-extension de
Z[G x G]-modules de A @ A par Z @ Z, on peut lui associer I'extension de
groupes

B 0> AxADSESL GxG -1
définie de la fagon suivante:
L’élément n = (n,;n,) € Ny @ N, satisfait y(n) = (1;1), donc si on pose
U = u, Du,:Gx G- M &M, on a Pulg;h) = (g;h) n — n On peut
alors définir f: (Gx G) x (GxG) > A x A par la condition

&f((gj,;h1)§(92§h2)) = d(g1§h1) + (g1 hy) 'd(gz;hz) — ’/Z(g1gz§h1h2) .

On vérifie facilement qu’on a la relation

(4.22.1) —((91 shy); (g2 hz)) = (fl(gl :92); folhy s hz)) .

On pose E = (Ax A) x (GxG) et on munit cet ensemble de la loi de
groupe induite par f.

On a Ma;b) = ((a;b)+e;(1;1)), ou e = (e;;e,), et p(asb);(g;h)
= (g;h).

423. LEMME. Les extensions de groupes &, x &, et E sont équi-
valentes.

Démonstration. Compte tenu de la formule (4.22.1) Papplication
o0: E - E, x E,, définie.en posant

8((a;b);(g;h) = ((as9);(b;h),

est un morphisme de groupes tel que le diagramme

3 ‘0> Ax A B E L GxG -1
lyxal 6] lgxe
E, xE:0 > AxA - E, xE, - GxG-1

A1 Xh2 p1 X p2 :1

soit commutatif. i
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424. Maintenant a la 2-extension de ZG-modules (1;@m,)A on associe
'extension de groupes

£,:0 > Ax ASE B G -1

définie de la fagon suivante.

Comme y(n) = A(l) I'élément n = (n;1) e N et satisfait y(n) = 1; donc
si on pose Uy = Uy D uy: G — M @ M, on a Boug(g) = g-n — n. On peut
alors définir f,: G x G - A x A par la condition

folg1s92) = uo(gs) + gy * uo(g2) — Uo(g192) -

On vérifie facilement qu’on a la relation

(424-1), folg1:92) = (f1(g1;gz)§fz(g1;gz))-

On pose ’EO = (Ax A) x G et on munit cet ensemble de la loi de groupe
induite par f,.
On a ho(a; b) = ((a;b)+e;1) et po((a; b);9) = g

425. LEMME. Les extensions de groupes EA et &, sont équivalentes.
Démonstration. On a un diagramme commutatif
£ ZO%AXAAE—ﬁ)GXGﬂl
lyxal o] TA
EA:O—%AXA?E'? G -1
ou E' est le produit fibré de i et A; donc un élément de E est de la
forme ((a;b);(g;9); 9).

Compte tenu de la formule (4.24.1) I'application &: ' — E,, définie en
posant

(a;b);(9:9)59) = ((a;b);9),
est un morphisme de groupes tel que le diagramme
A0 > AxAS B E 6o
Lyl 6 Vg
&OIOHAXA?EOﬂGal
0 Ho

soit commutatif.
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4.26. Finalement & la 2-extension.de ZG-modules V((n;@®n,)A) on associe
I'extension de groupes

£:0 > ADSESLG 1

définie de la fagon suivante.
Si on pose u = Yuy:G—> M on a Pu(g) = g-n — n, donc on peut
definir f: G x G — A par la condition
of(gy;92) = ulg:) + g1 ulg,) — u(g:19,) -

On vérifie facilement qu’on a la relation

(4.26.1) fg1:92) = f1(91592) + f2(9:1:92) .

On pose E = A x G et on munit cet ensemble de la loi de groupe
induite par f.
On a Ma) = (a+Ve; 1) et ula;g) = g.

427. LEMME. Les extensions de groupes V&, et & sont équivalentes.
Démonstration. On a un diagramme commutatif
Eo 10 5> AxASE S G o1
Vi W | 1 1g

V€g: 0 » A4 - E; - G - 1

*0 1o
ou Ej, est le produit cofibré de A, et V.

Compte tenu de la formule (4.26.1) l'application w: E, — E, définie en
posant ((a;b);g) = (V(a;b);g), est un morphisme de groupes tel que
why = AV et po = p,. D’aprés la propriété universelle du produit cofibré
il existe donc un morphisme de groupe 6: Ey — E tel que 6Ay = A et
oWy = .

On peut donc considérer le diagramme

VE,: 0 » A S E "G 1

0 8L 1
E :O——)A—?E—:G—)1
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dans lequel le premier carré est commutatif. Le deuxiéme carré est aussi
commutatif car on a péw, = How, et w, est surjectif car V est surjectif.

4.28. La relation d’équivalence entre extensions étant stable vis-a-vis des
produits fibrés et cofibrés, les résultats précédents donnent

(D) + P([2]) = [V(E, x&)A] = [VEA]
= [V&] = [E] = ‘P([V(m@nz)A]) = Y([n,]+[n.]).

(Regu le 8 juillet 1987)

Pierre-Paul Grivel

Université de Genéve
Section de mathématiques
Rue du Liévre 2-4

CH — 1211 Genéve 24






	EXTENSIONS DE MODULES ET COHOMOLOGIE DES GROUPES
	Introduction
	1. Rappels sur les extensions
	2. DÉRIVATIONS ET EXTENSIONS
	3. Le groupe $H^1(G;A)$
	4. Le groupe $H^2(G;A)$


