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L'Enseignement Mathématique, t. 34 (1988), p. 333-356

REPRÉSENTATIONS ET TRACES DES ALGÈBRES DE HECKE

POLYNÔME DE JONES-CONWAY

par Pierre Vogel

§ 0. Introduction

La théorie des nœuds et entrelacs classiques a eu, ces dernières années,

un renouveau considérable dû, en grande partie, à la découverte de nouveaux
invariants polynomiaux. Le premier en date de ces récents invariants est un

polynôme à une variable V construit par V. Jones [9], [10] en 1985 à

l'aide de traces construites sur certaines algèbres de von Neumann. Ce

polynôme a été immédiatement généralisé à un polynôme à deux variables P

[6] appelé polynôme de Jones-Conway ou polynôme HOMFLY. Un autre
polynôme à deux variables K a été également construit par Kauffman [13]
un peu plus tard. Les deux polynômes P et K généralisent le polynôme
original de Jones, et P généralise également le polynôme d'Alexander [2]
connu quant à lui depuis une cinquantaine d'années.

Si le polynôme d'Alexander est parfaitement compris et a été très utile

pour l'étude du complémentaire du nœud ou de l'entrelacs, la situation est

quelque peu différente en ce qui concerne les autres polynômes. Ils sont tout
d'abord très précis, en ce sens qu'ils permettent de distinguer de nombreux
nœuds indiscernables par l'utilisation seule du polynôme d'Alexander, par
exemple les nœuds de trèfle droit et gauche. Ils sont, de plus, très bien
adaptés à l'étude de certaines familles de nœuds ou d'entrelacs. Par exemple
le polynôme de Jones, grâce à une très jolie construction de Kauffman, a

permis à Kauffmann et Murasugi [16] de montrer certaines conjectures sur
les nœuds alternés, vieilles de plus d'un siècle.

En un certain sens, on peut dire que ces polynômes sont des témoins
extrêmement précis de la forme géométrique des nœuds et des entrelacs. Ils
restent cependant très mystérieux. Par exemple les questions suivantes sont,
à l'heure actuelle, toujours sans réponse:

— Quelles sont les significations géométriques exactes des polynômes P
et Kl Est-il possible, comme pour le polynôme d'Alexander, de les décrire
à l'aide du type d'homotopie du complémentaire



334 P. VOGEL

— Existe-t-il un nœud non trivial avec un polynôme P ou K trivial?
On connaît actuellement des nœuds distingués par P et non par K ainsi

que des nœuds distingués par K et non par P. En ce sens aucun des

deux polynômes P et K n'est conséquence de l'autre. On connaît également
des nœuds qui ne sont distingués ni par P ni par K. Cependant, dans tous
ces exemples, ces nœuds sont non triviaux, et l'on ne sait pas si P ou K
ou les deux, permettent de déterminer si un nœud est ou n'est pas dénoué.

— On sait que si un nœud K est slice, c'est-à-dire qu'il borde un disque
dans la boule P4, le polynôme d'Alexander A(t) du nœud est de la forme
P(t)P(t~1) où P est un polynôme en t à coefficients entiers. Est-ce qu'un
phénomène du même genre a lieu pour le polynôme P ou le polynôme K
On sait que cette propriété du polynôme d'Alexander ne se généralise pas
telle quelle, car on connaît des nœuds slices pour lesquels les polynômes de

Jones-Conway sont irréductibles et non triviaux. Cependant, il est possible

que le fait qu'un nœud soit slice impose à son polynôme de Jones-Conway
ou son polynôme de Kauffinan certaine condition algébrique.

— Quelles sont les formes possibles pour les polynômes P et K d'un
nœud ou d'entrelacs Comme ces polynômes prennent en certains points des

valeurs bien précises, ils ne sont absolument pas quelconques.
Il y a à ce jour essentiellement deux méthodes pour construire les

polynômes de Jones-Conway et de Kauffinan. La première consiste à définir
le polynôme P d'un entrelacs représenté par une projection régulière sur le

plan, récursivement sur les projections de plus en plus complexes. Puis à

montrer que ce polynôme ne dépend pas des choix que l'on a été obliger
de faire et qu'il ne change pas si l'on effectue des modifications élémentaires
de type Markov sur la projection de l'entrelacs. L'avantage de cette méthode
est qu'elle est totalement élémentaire et n'utilise aucun outil théorique
complexe. L'inconvénient est qu'elle n'offre aucune vision un tant soit peu
globale de ces invariants. Conceptuellement elle n'explique rien. La deuxième

méthode utilise des résultats d'Alexander et de Markov qui ramène le

problème de la construction d'invariants sur les entrelacs à celui de la
recherche de certains invariants sur les tresses. Or, les groupes de tresses Bn

admettent des représentations dans certaines algèbres ; en particulier dans les

algèbres de Hecke et les algèbres de Brauer. On peut alors chercher des

invariants sur les entrelacs en construisant certaines traces sur les algèbres de

Hecke ou sur les algèbres de Brauer. Les résultats de Jones, Ocneanu pour
l'algèbre de Hecke [9] et de Kauffman [13], Birman et Wenzl [4] pour
l'algèbre de Brauer montrent que ces traces existent et sont uniques. Comme

ces traces sont à valeurs dans un anneau de polynômes à deux variables
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on en déduit l'existence des deux polynômes P et K. Cette dernière méthode

est en un certain sens plus globale, mais elle pèche encore sur un point.

Elle n'explique pas vraiment ce que sont ces traces ni quelle est leur

signification.

Le but de cet article est de donner un nouvel éclairage sur cette dernière

construction du polynôme de Jones-Conway. Si l'on considère toutes les

traces sur l'algèbre de Hecke, Hn on remarque qu'elles proviennent d'une

trace universelle à valeur dans un module A„. De plus, la juxtaposition de

tresses induit des applications de Hp 0 Hq dans Hp+q et de Ap 0 Aq

dans Ap+q, ce qui fait de la somme directe des modules A„ une algèbre

commutative graduée. On montre alors que cette algèbre est une algèbre de

polynômes en des variables cf e At. Si l'on spécialise les coefficients qui
définissent les algèbres de Hecke d'une certaine façon, celles-ci deviennent les

algèbres des groupes symétriques et les classes c{ correspondent aux

classes de conjugaison de cycles d'ordre i dans SP

Ainsi, pour toute tresse x de Bn sa trace f(x) est un polynôme en les

classes ct homogène de degré n, l'anneau des coefficients étant lui-même un
anneau de polynômes à deux variables. On montre alors que le polynôme de

Jones-Conway de l'entrelacs associé à la tresse x est, à un scalaire c_1

près, le polynôme f(x) où l'on a donné à tous les c{ une certaine valeur c.

Si l'on spécialise les variables de façon que les algèbres de Hecke deviennent
les algèbres des groupes symétriques, le polynôme £(x) devient simplement un
monôme fj cn., si la permutation a associée à x est formée de cycles

i
d'ordre nt. Si l'on identifie de plus les classes cf,f(x) devient égal à c",

n étant le nombre d'orbites de a, c'est-à-dire le nombre de composantes
connexes de l'entrelacs associé à x. En ce sens, le polynôme de Jones-

Conway peut être considéré comme une déformation de l'application qui, à

tout entrelacs à n composantes, associe cn~1.

En plus des traces universelles sur les algèbres de Hecke Hn, on construit
des traces associées à des représentations explicites associées à chaque
partition de n. Ces représentations ne proviennent pas des diagrammes de

Young. Le point de vue est direct et assez différent de celui de Jones [11]
et de Wenzl [18]. La trace de Jones-Ocneanu peut s'exprimer explicitement
en fonction de ces traces.

Enfin, on montre que la représentation du groupe des tresses Bn dans

l'algèbre de Hecke Hn s'étend à un monoïde Bn contenant Bn et formé de
tresses généralisées (appelées semi-tresses), une semi-tresse étant une variété
differentiate compacte L de dimension 1 contenue dans la bande [0, 1] x R2
de l'espace et standard sur le bord, c'est-à-dire que ôL est égal à

d[0, 1] x {1, 2,..., n} x 0 avec des orientations compatibles.
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§ 1. Une description du polynôme de Jones-Conway

Soit Bn le groupe des tresses à n brins. Ce groupe est engendré par les

éléments al5 ct2, ct„_i et est la tresse élémentaire qui croise le i-ième
et le i + 1-ième brin de la façon suivante:

De plus, deux de ces tresses a et a' commutent si elles ne sont pas
d'indices consécutifs, et vérifient la formule suivante dans le cas contraire:

On a ainsi un système complet de générateurs et relations du groupe Bn.
Les groupes B0 et B1 sont triviaux et le groupe B2 est commutatif

libre de rang 1. Les groupes Bn sont non commutatifs pour n > 2.

Soient p et q deux entiers positifs ou nuls. Soient a et x deux tresses à p
et q brins. On peut alors juxtaposer ces deux tresses et obtenir une nouvelle
tresse à p + q brins que l'on notera a x x. Ceci définit ainsi un morphisme
de groupes de Bp x Bq dans Bp+q. Il est facile de vérifier que ce produit
est associatif et unitaire, d'unité l0e B0, en notant pour tout i ^ 0, l'unité
de Bt.

D'autre part, si x est une tresse de Bn, on peut fermer x en connectant
les extrémités supérieures de la tresse à ses extrémités inférieures, et cela sans

rajouter de croisements. On obtient de ce fait un entrelacs orienté x.

crcr cj o" aa

Exemple :

x: x:

Ceci nous donne une application de l'union disjointe B des groupes Bn,

n ^ 0, dans l'ensemble E des classes d'isotopie d'entrelacs orientés. Le
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théorème d'Alexander [1], [15] montre que cette application est surjective.

Le théorème de Markov [15] dit, plus précisément, que E s'identifie, via

l'application au quotient de B par la relation d'équivalence engendrée

par:

Va, t e Bn, ai xa

Vaeß„, a (axl^ (ax l^a"1

Définition 1-1. On appellera bi-algèbre graduée, une suite d'algèbres

An, n ^ 0, sur un anneau commutatif k, munies d'applications ppq de Ap 0 Aq

dans Ap + q, qui vérifient les propriétés suivantes:

— Les applications \ipq sont des morphismes de /c-algèbres.

— Elles sont associatives :

Vx e An, Vy eAp,VzeAq> \in+pq(\inp(x®y)p.np + q(x®[ipq(y®zj).

— Elles ont un élément neutre :

Vx eAn,xHoB(l0®x) H„0(x® 10).

Une telle bi-algèbre sera simplement notée et le produit p sera noté x.

Définition 1-2. Soit A^ une bi-algèbre graduée. On appellera représentation

des groupes de tresses dans A^, une suite p„, n ^ 0, telle que :

— pour tout n ^ 0, p„ est une représentation du groupe Bn dans le groupe
des unités de An,

— ces représentations p sont compatibles avec les produits x

Exemples. On a une représentation universelle en posant :

Vn ^ 0, An klBJ
et en étendant le produit x à tout An.

On peut également considérer les algèbres: An k[Sn], et prendre les

représentations canoniques de Bn dans

Soit k l'anneau Z[a, ß, ß-1]. Soit Hn la /c-algèbre quotient de /c[£„] par
l'idéal bilatère engendré par les éléments :

of — a<jt + ß, 0 < i < n

Proposition 1-3. Les algèbres Hn forment une bi-algèbre graduée et les

applications canoniques de Bn dans Hn forment une représentation des

groupes de tresses.
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Démonstration. Il suffit de remarquer que les applications x de

k[£P] ® k[Bq] dans k[Bp+q~\ passent au quotient et définissent des

applications de Hp (g) Hq dans Hp+q.

Remarque. Les algèbres Hn sont en fait des algèbres de Hecke formelles.
Si dans la définition de Hn, on remplace k par un corps K, avec a q — 1

et ß — q, où q est un paramètre de K, on obtient exactement l'algèbre
de Hecke classique.

Proposition 1-4. Soit A^ une bi-aîgèbre graduée sur un anneau commu-

tatif k. Alors les k-modules H0(An) forment une k-algèbre unitaire graduée.

Démonstration. Si A est une /c-algèbre, le groupe d'homologie de

Hochschild H0(A) est un k-module quotient de A par le sous-/c-module

engendré par les éléments de la forme ab — ba, a et b parcourant A. On
désignera par t l'application quotient de A dans H0(A). On peut voir t

comme la trace universelle sur A. Il n'est pas difficile de vérifier que H0
est un foncteur de la catégorie des k-algèbres dans la catégorie des k-modules.
De plus, si A et B sont deux k-algèbres, H0(A®B) est canoniquement
isomorphe à H0(A) (g) H0(B).

Il en résulte que le produit x de Ap (g) Aq dans Ap + q
induit un produit de

H0(Ap) (g) H0(Aq) dans H0(Ap+q). Ce produit est clairement associatif et

possède £(10) comme unité.

Dans toute la suite on désignera par A„ le /c-module H0(Hn). La k-algèbre

graduée formée des modules An sera notée A. L'application canonique t

de Hn dans An sera notée tn. Enfin, on désignera par cn l'élément

t„(olcj2...de A„.

Théorème 1-5. L'algèbre A est l'algèbre des polynômes sur k en les

variables ct, i ^ 1.

Théorème 1-6. Soit I un sous Z-module de A. Soit f l'application
de la somme disjointe des groupes de tresses Bn dans A/7 déduite de la

représentation des groupes de tresses dans H% et des applications tn.

Alors pour toute tresse a, /(a) ne dépend que de l'entrelacs a, si et

seulement si I contient l'idéal J de A engendré par les éléments:

ct — cl9 i ^ 2 c1(l + ß — acq).

Remarque. Soit I0 l'idéal de A engendré par les éléments ct — c1.
Alors A/Jo est isomorphe à l'algèbre k[c] =a Z[a, ß, ß_1, c], c représentant la
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classe commune des éléments ct. Si maintenant t est une tresse de Bn, n > 0,

la trace tn (t) est un élément homogène de A de degré n et sa classe

modulo I0 est de la forme cP où P est un polynôme de k[c]. Il en

résulte que la classe de tn(x) modulo J est représentée par cP', où P'
est égal à la classe de P modulo 1 + ß — ölc. Le polynôme P' appartient
donc à l'anneau A quotient de k[c] par 1 + ß — ac. Cet anneau est

isomorphe au sous-anneau de Z[a, a-1, ß, ß-1] engendré par a, ß, ß_1 et

(l + ß)a_1.

Théorème 1-7. Soit A le sous-anneau de Z[a, a-1, ß, ß_1] engendré

par a, ß, ß-1 et c — (l + ß)a-1. Alors il existe pour tout entrelacs orienté
E un polynôme PE de A tel que :

— PE ne dépend que de la classe d'isotopie de E.

— Si E est le nœud trivial, le polynôme PE est égal à 1.

— Si E+,E_ et E0 sont trois entrelacs orientés ayant la même forme
excepté près d'un croisement où ils ont les configurations suivantes:

E+ E_ E0

on a

(F) A+ - v.PEo + ß/V 0.

De plus, si E provient d'une tresse oeB„, et si la trace tn(a) est
un polynôme P(a,ß, cltc2,...),on a

P(a,ß, c, c,...) cPE(a, ß).

Remarque. Le polynôme PE est, à un changement de variables près, le
polynôme de Jones-Conway (ou polynôme HOMFLY) de E. Le changement
de variable dépend de la forme que l'on veut obtenir pour la formule (F).
Si l'on veut, par exemple, que (F) prenne la forme suivante :

X-P£+ + yPE_ + 0

on doit poser

OC — ZX~ 1
ß yyc-1

et PE est un polynôme à coefficients entiers en zx-1, yx"1, xy"1 et (x-hy)z"1.
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§ 2. Représentations des algèbres de Hecke

Dans toute la suite, on désignera par K l'extension quadratique de

l'anneau k définie par

K /cMA2_aX+ß.

On posera également p a — X. On a donc

a X + p, ß Xp,

et K est l'anneau des polynômes de Laurent à coefficients entiers en les

variables X et p.

Soit n un entier positif. On désignera par Xn l'ensemble {1, 2,n}
et l'on notera M le K-module librement engendré par l'ensemble Fn des

fonctions de Xn dans Z. Soit i un entier compris strictement entre 0 et n.

On notera st l'application linéaire de M dans lui-même définie par :

/ Xf° Sisi /(/) < /(i+1)
VfeF„,si(f) I Xfsi /(/) /(i+1

(k + H)/ - M-/ 0 Si si /(/) > /(i+1)
où 81 désigne la permutation de Xn qui échange i et i + 1.

Lemme 2-1. Les endomorphismes si vérifient les formules suivantes :

sf — OLSi + ß 0

Vz,j < n, j > i + 1 => s^j SjSi

j i + 1 => sisjsi SjSiSj.

Démonstration. La deuxième formule est évidente car les supports des

permutations et Sj sont disjoints. La première formule à vérifier sur une
fonction / est évidente si / prend les mêmes valeurs en i et en i + 1.

Il y a donc essentiellement les cas /(i) > /(i + 1) et f(i) < /(i+1) et chacun
de ces cas se montre aisément. Quant à la dernière formule, il faut considérer,

pour une fonction / de F„, les différentes positions respectives de /(i),
/(i +1), /(i + 2). Lorsque deux de ces nombres sont égaux, la formule est

facile à vérifier. Sinon il reste à priori six cas à examiner. A ce stade il
est plus facile de poser :

Va, i? e Z a < b => [a, h] 0 <a,b> X

a > b => [a, b] % + \i <a, b> — p
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On a alors, si f(i) est différent de f(i +1),

Si(f)C/(0, /(i+l)]/+ </(0> /('- 1) > 6» •

Désignons par a, b et c les trois nombres /(i), /(i + 1) et /(i + 2) que

l'on suppose distincts. On vérifie les formules suivantes :

SiSjSi(f) (la, b~]2[b, a] + [a, c] <a,b> <b,a>)f
+ ([a, h] [h, c] <a, b> + la, c] lb, a] <a, b>)f °

+ [a, £] [a, c] <b, c> f o s- + [a, 6] <a, c> <b, c>f °

+ [6, c] <a, h> <a, c> f o 8^8j

+ <a,b> <a,c> <b, c> f °

SjSiSj(f) (la, b~\ lb, c]2 + [a, c] <b, c> <c, b>)f
+ ([a, fr] [fr, c] <b,c> + [a, c] [c, fr] <b, c>)f ° s7-

+ [a, c] [h, c] <a,b> f o sf + [a, h] <a,c> <b, c> f ° sjei

+ [^, c] <a,b> <a, c> f ° s7-

+ <a,b> <a,c> <b,c> f ° s7-S;s7-.

Il n'est alors pas difficile de vérifier que les deux expressions sont égales

quelles que soient les positions respectives des trois nombres a, b et c.

Corollaire 2-2. Il existe une représentation de l'algèbre Hn dans

l'algèbre des endomorphismes de M, qui envoie les générateurs <jt de

Hn en l'endomorphisme st. De ce fait M devient un H„-module.

Soit cp une application à support fini de Z dans N. On appellera
poids de cp le nombre cp(p). Soit M(cp) le sous-module de M (n étant

peZ
égal au poids de cp) engendré par les fonctions / de Fn telles que

VpeZ, cp(p) => card

Proposition 2-3. Pour toute fonction cp de Z dans N, à support fini,
le sous-module M(cp) de M est un Hn-module.

Démonstration. Evidente.

Soient p < n des entiers strictement positifs. On notera l'ensemble des

éléments de Hn de la forme: ap_1ap_2 ai5 avec 1 ^ i ^ p. Si i est égal à 1,

cet élément est égal à 1. On notera Sn l'ensemble des éléments de Hn
de la forme: x„, chaque élément xf appartenant à L'ensemble S„
possède p! éléments. L'importance de cet ensemble provient du résultat
classique suivant :
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CJjXj si j < - 1

X si j - 1

aT; - ßti-1 si j
Vj-lli si j >

Proposition 2-4. L'algèbre Hn est un k-module libre de base Sn.

Démonstration. Soit p < n un entier strictement positif. Notons, pour
tout i compris entre 1 et p (au sens large), xt l'élément ap_1ap_2
Il est facile de vérifier les formules suivantes :

Vi < p, V; <

Il en résulte que le sous-module de Hn engendré par Sn est stable par
multiplication à droite par tous les générateurs ot de Hn, ce qui prouve
que Hn est engendré linéairement par Sn.

Soit maintenant cp l'application de Z dans N, de support {1, 2,..., n}
et qui vaut 1 sur son support. Le K-module M(cp) est alors isomorphe à

l'anneau du groupe symétrique K[0„]. Soit f0 l'inclusion de {1,..., n) dans Z.

La multiplication à droite par f0 induit une application K-linéaire y de

Hn (g) K dans M(cp). Si l'on tensorise ces modules par Z au-dessus de K,
via le morphisme de K dans Z qui envoie À et p en 1 et — 1, Hn ® Z
devient Z[0„] ainsi que M(cp) et y devient l'identité. On en déduit que
y(S„) est une base de M(cp) 0 Z et un système libre de M(cp). Ce qui

prouve que Sn est une base de Hn.

Corollaire 2-5. Powr tout entier n > 0, Hn est un Hn-^module à

gauche libre de base {1, a„_l5..., a„_1a„_2 G!}.

Corollaire 2-6. Pour tout n>0,Hn + 1 est un Hn-bimodule isomorphe à

Hn®Hn 0 Hn.
Hn- i

Démonstration. L'isomorphisme provient de la stabilisation z de Hn
dans + 1 et de l'application de Hn x Hn dans H„ + 1 qui à (m, u) associe

i(u)ani(v). L'application qui s'en déduit respecte les bases (pour la structure
le Hn-module à gauche). C'est donc un isomorphisme.

§ 3. Traces des algèbres de Hecke

Soit n > 0 un entier. Via la stabilisation i de Hn dans Hn + 1, Hn+1

est un H„-bimodule. On peut donc considérer le module En H0(Hn, Hn + 1),

quotient de Hn + 1 par le sous-module engendré par les éléments de la forme:
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ax — xa aei(Hn), xeHn + 1.

Comme précédemment, le produit x induit un produit associatif de

Ap (g) Eq dans Ep+q et E est un A-module gradué.

Proposition 3-1. L'application qui, à tout élément xeHn, associe

l'élément (xxlja,, de Hn + ii 1 étant l'unité de Hv, induit pour tout

n > 0 une application de En_1 dans En. Cette application sera notée 0.

Démonstration. Il suffit de remarquer que <jne Hn+1 commute avec tout
élément stabilisé d'un élément de Hn^1.

Notations 3-2. On désignera par s0 la classe de leH1 et, pour tout
n > 0, on posera

Sn Q(Sn-l).

L'application quotient de En dans An+1 sera notée /; / est une forme

A-linéaire surjective, et l'on a: Vrc ^ 0, f(sn) cn + 1.

Proposition 3-3. E est un A-module libre de base {s0, $l9s2....}.

Démonstration. D'après le corollaire 2-6, on a

En A„ © H0(Hn, Hn (g) Hn).
Hn-i

Il n'est pas difficile de montrer que l'application de Hn (g) Hn dans Hn qui
à m (g) d associe vu induit un isomorphisme de H0(Hn,Hn (g) Hn) sur

Hn- 1

H0(Hn-.1, Hn) En_1. Ce qui montre que l'application de A„ © En_1 dans

En, qui à u © v associe us0 + 6(v), est un isomorphisme.
On en déduit, par récurrence sur n, la formule

En A„s0 © A^-LS-L © © A0s„,

ce qui montre le résultat cherché.

Lemme 3-4. L'algèbre A est engendrée par les éléments ct,i > 1.

Démonstration. La formule

En A„s0 © A^iSi © © A0s„

montre que A„ + 1 est engendré par les sous-modules A„_iCi+1, pour i variant
de 0 à n. Comme ceci a lieu pour tout n > 0, on en déduit le résultat.

I 25
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Lemme 3-5. L'algèbre A est commutative.

Démonstration. Soient o et t deux tresses. Comme les tresses g x x

et t x a sont clairement conjuguées, les traces de a et de t commutent
dans A. Comme de plus les classes ct proviennent de tresses, A est commutatif.

Soit (p une fonction de Z dans N à support fini. Le module
M(cp) (voir § 2) est un module libre de dimension fini sur l'anneau

K Z[X, X~1, p, p-1] et l'algèbre Hn (n étant égal au poids de cp) agit
sur M(cp). Pour tout élément u de Hn on notera t^u) la trace de l'endo-

morphisme de M((p) induit par la multiplication par u. Comme tç est

linéaire et prend la même valeur en uv qu'en vu, induit une application
linéaire L{J, de A„ dans K que l'on prolongera par 0 sur tous les modules

Ap, p i=- n. Ainsi, l'application T9 est une application /c-linéaire de A dans K.

Lemme 3-6. On a la formule :

T9(cn) r-^+ p)*-1

k désignant le cardinal du support de (p.

Démonstration. Soit S le support de (p. C'est une partie de Z à k

éléments. Par définition M((p) a une base £((p) formée des fonctions / de

Xn {1, 2,..., n} dans S telles que pour tout i de S, / prend la valeur i

exactement cp(i fois. Si l'on munit M(cp) d'un produit scalaire < > tel

que 5((p) soit une base orthonormée, on a

T„(c») Z </' S1S2 - «„-!(/)> •

JfeJB(q>)

Soit / un élément de la base ß(cp). L'élément Sn-^f) est de la forme

qf + 6/°8n_1, b étant supposé nul si / prend les mêmes valeurs en n

et en n — 1. Comme la valeur de /os„_1 en n n'est pas modifiée après

action des éléments st,i < n — 1, on a

</, 5jS2 s„_1(/)> a</, S!S2 s„_2(/)>

Si f{n — 1) est strictement inférieur à /(n), a est nul. Sinon a est égal à a

ou X + p suivant que f(n— 1) est égal ou non à /(n). En itérant ce

raisonnement de proche en proche, on vérifie la formule

0 si 3i < n tel que f(i) < /(/+1)</>v*-»-.</» -1 V(X+(l), sinon>

p (resp. q) étant égal au nombre d'entiers non nuls i < n tels que f(i)
et égal (resp. strictement supérieur) à f(i+1).
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Si la suite /(l),f(n) est décroissante, q est égal au cardinal de

l'image de / diminué d'une unité, et p est égal à n — 1 — q. Comme de

plus la base 5(cp) ne contient qu'une seule fonction décroissante, on vérifie

aisément le lemme.

Proposition 3-7. Soit cp une fonction de Z dans N de poids

n =z p 4- q. Soient u et v deux éléments de Ap et Aq. Alors on a

T9{uv) XT9,(u)V>),
la sommation ayant lieu sur toutes les fonctions cp' de poids p, comprises

au sens large entre 0 et (p.

Démonstration. Désignons par Hp x Hq l'image par l'application x de

Hp 0 Hq dans Hn. Le module M((p) est isomorphe, en tant que Hp x Hq-
module à la somme directe des modules M(cp') 0 M((p — cp'), <P' appartenant
à l'ensemble des fonctions de poids p et comprises entre 0 et (p. Soient x
et y des représentants de u et v dans Hp et Hq. Comme la trace de

u 0 p agissant sur M(cp') 0 M(cp —cp') est égal au produit de la trace de u

agissant sur M(cp') par la trace de v agissant sur M(cp —cp'), on obtient
le résultat cherché.

Corollaire 3-8. Soit cp une fonction à support fini de Z dans N.
Soit s une bijection de Z dans Z. Alors les formes linéaires T9 et T908

sont égales.

Démonstration. D'après le lemme 3-6 T9 et T(po£ prennent la même valeur
sur les éléments cn de A. D'après la proposition 3-7, si, pour tout cp,

T9 et T(poe prennent les mêmes valeurs en u et en v, elles prennent, pour
tout cp, la même valeur en un. On en déduit que T9 et T(poe sont égales
quel que soit cp.

Il en résulte que 7^ ne dépend que de la partition du poids n de cp

en les nombres cp(p). Cette partition est caractérisée par la suite finie
Pi,p2,... ; Pi désignant le nombre de fois où cp prend la valeur i. On notera
alors T9 sous la forme Tu, où u est le mot cpf cp22...

§4. La trace T

Soit x (X| une famille de symboles. On désignera par A(x) l'algèbre
des séries en les xt- à coefficients dans K Z[X, p, p-1]. Un élément de
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A(x) est donc une combinaison linéaire finie ou infinie de monômes finis
en les xf, à coefficients dans K. En affectant à chaque xt un degré 1,

A(x) devient une algèbre graduée. Si x et y sont deux familles de symboles,
^4(x, y) désignera l'algèbre A(z), z étant l'union disjointe des deux familles.

Le z-ième polynôme symétrique élémentaire en les variables xt sera noté

cf(x). L'algèbre des séries symétriques de A(x) est donc l'anneau gradué des

séries formelles c2(x),...]], c£(x) étant affecté du degré i.

Soit x une famille de symboles indexée par Z. Les éléments cfx) seront
notés ct. On définit alors une application T de A dans K[cl9 c2, ».] de

la façon suivante :

Vn > 0, Vw e A„, T(u) £ 7» [] *f(i),
<p i

la sommation ayant lieu sur toutes les fonctions cp à support fini de Z dans N.
Pour tout u de An, T(u) est une série homogène de degré n et

symétrique, c'est donc un polynôme homogène de degré n en les cf.

Théorème 4-1. T est un morphisme de k-algèbres graduées de A dans

K[c1, c2,... ] et les images par T des classes ct de A sont données

par la formule suivante :

\ v1 ty \ rr1 + ^xi1 + + h2c2 +
1 + (X+n) 2, T(ct) H- — —Ji>0 i 1 — kxi 1 — Xc1 + nc2 —

Démonstration. Il est clair que T est k-linéaire. Le fait que T
respecte le produit est conséquence de la proposition 3-7. D'après le lemme 3-6,

on a pour tout n > 0,

(X + H)T(C„) 2>»-^+ n)*n*?(i),
i

la sommation ayant sur toutes les fonctions (p de poids n de Z dans N,
k désignant le cardinal du support de cp.

Si a est un entier de N, désignons par ä le nombre qui vaut 0 ou 1

suivant que a est nul ou non. Le cardinal k du support de cp est donc

égal à la somme des nombres cp(i) et l'on a

i + (i+n) E T(Ci)
i > 0 tpi

la somme ayant lieu sur toutes les fonctions cp à support fini de Z dans N.
Ce qui implique
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1 + (A,-f}i) ^ T(Ci) — Yl X (1 + pA 1) Q^xi)
i> 0 i a^O

n(i+(i+^-i)r-^;)

_ rr1 +
—-

1 + + + -
i 1 — Xx[ 1 — + •••

4-2. Démonstration du théorème 1-5. On sait déjà que l'algèbre A est

engendrée par les classes c;, i>0. Or, modulo les décomposables de l'algèbre

JC[Ci,c2,...]» on a

I + (X+n) E T{Ci)(1 + pcj + \i2c2 +•••) (1 + Xcx — + —)

i > 0

1 + (k + y)cl + (|i2-X2)c2 + ([i3 + V)c3 +

T{Ci) est donc, modulo les décomposables de K[c1, c2,...], un multiple non
nul de ct et les éléments T(cf) sont algébriquement indépendants. Il en est

donc de même des classes ct de A et A est la /c-algèbre des polynômes

en les variables ct.

II est possible de donner une forme assez concise de la trace T de la

façon suivante. Soient x et y des familles de symboles. Si / est une série de

l'anneau A(x, y), symétrique en x et en y, f est une combinaison linéaire
de monômes de la forme uv, u étant un monôme en les éléments ct(x)
et v un monôme en les éléments ct y). Si l'on remplace dans chacun de

ces monômes, u par le monôme correspondant en les classes ct et v par
l'application Tv. où v' est obtenu en remplaçant dans v chaque ct (>')

par la classe ci9 on obtient une application linéaire de K[_cl9 c2,... ] dans

lui-même que l'on notera /.

Théorème 4-3. La trace T est égale à f, f étant la série

fn •

ij

Démonstration. Par définition la trace T est égale à /, avec

/ z "(v) n xti) >

q> i

u((p) étant le monôme c^yy'c^y)"2... et pt désignant le nombre de fois où cp

prend la valeur i. C'est-à-dire que l'on a

"(cp) n c<p(i)(f) en convenant que c0(y) est égal à 1.



348 P. VOGEL

Et cela implique

f Enw^f1" n E nn^+^i^)-
(pi i n > 0 i j

§ 5. La trace de Jones-Ocneanu

On se propose ici de montrer les théorèmes 1-6 et 1-7.

5-1. Soit donc une relation d'équivalence additive sur A possédant la
propriété suivante :

(P) Vn > 0, Vm e H„, tn(u) tn+1[_(uxJcr"1].

Comme cr"1 est égal à aß-1 — ß_1a„, on a

t« + i[(«x IJct"1] aß^Cjt,» - ß_1t„ + i[(MX IJJctJ

D'autre part, l'application de Hn dans Hn + 1 qui à u associe (wxl^a,, induit
l'application 0 de En... x dans En (voir 3-2). La propriété (P) est donc

équivalente à
^

Vn > 0, Vn e En_x, f(u) ee f(du) ee ocß~ ^/(n) - ß" 7(0"),

c'est-à-dire

MueE f(u) /(0n) et (1 + ß —acJ/Xn) 0

/ désignant la projection canonique de E sur A.

D'autre part, E est un A-module libre de base (s0, s1? s2> •••) et l'on a

Vn > 0, 9s„ s„+1 et /(s„) c„ + 1

La propriété (P) est donc équivalente à

Vn > 0 Vn g A, nc„ nc„+1 et wc„(l + ß —occ1) 0,

et la plus petite relation vérifiant la propriété (P) est donc la congruence
modulo l'idéal J de A engendré par les éléments

cn — c'i n>l et c1(l + ß — acq),

ce qui achève de démontrer le théorème 1-6.

5-2. Soit T une tresse de Bn, n > 0. La classe de fn(x) modulo l'idéal I0
de A engendré par les éléments ct — c1 est de la forme cP, où c représente
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la classe commune des ct et P est un polynôme de k\_c] Z[a, ß, ß-1, c\.

Il en résulte que la classe de tn(x) modulo J est représentée par cP\P'
désignant la classe de P dans l'anneau A /c[c]/1 + ß_ac. D'après les

théorèmes d'Alexander et Markov, le polynôme P' ne dépend que de l'entrelacs x.

On a ainsi associé à tout entrelacs orienté E un polynôme PE P' de

l'anneau A. Cet anneau est en fait le sous-anneau de /c[a, a"\ ß, ß~x]
engendré par a, ß, ß_1 et (l + ß)a_1.

Si x est un croisement d'un entrelacs E dessiné dans le plan, la méthode

d'Alexander permet de modifier le dessin de E sans changer le croisement x
de façon à obtenir un entrelacs E' isotope à £ et de la forme x, où t
est une tresse de Bn. Il en résulte que les trois entrelacs E+, E_ et E0

obtenus par modification de E au voisinage de x sont isotopes à des

entrelacs de la forme x +, x_ et x0 où l'on a

T= t'cTjT", T_ x'tffiV', T0 t't"

On a alors dans l'algèbre Hn l'égalité suivante :

x + — otx0 + ßx_ 0,

ce qui implique

PE+ - aPEo + ßP£_ 0

Si E est le nœud trivial il est de la forme 11 et la classe de l1 dans
le quotient de A par I0 est égal à c. On a donc

Pe 1

et le théorème 1-7 est alors clair.

§ 6. Une généralisation du polynôme de Jones-Conway

Soit n > 0 un entier. Soit L une sous-variété differentiable compacte
orientée de dimension 1 de l'espace usuel R3 entièrement contenue dans la
bande [0, 1] x R2. On suppose que le bord de L est standard. C'est-à-dire
qu'il est formé des 2n points de coordonnées (z, j, 0) avec z 0, 1 et j
variant de 1 à n. On suppose de plus qu'en chacun de ces points, le
vecteur tangent à L est vertical descendant, c'est-à-dire à projection nulle
sur le plan horizontal 0 x R2 et à projection négative sur l'axe vertical
R x 0.
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Définition. Une telle variété L sera appelée semi-tresse à n brins. Deux
semi-tresses à n brins seront dites isotopes s'il existe une isotopie de la bande

[0, 1] x R2 fixe sur le bord qui envoie l'une sur l'autre.
Soient L et L' deux semi-tresses à n brins. En recollant les deux bandes

l'une au-dessus de l'autre (celle contenant L étant au-dessus), on obtient une
nouvelle semi-tresse. Cette semi-tresse sera appelée produit de L par L' et

notée LL'.

Proposition 6-1. L'ensemble des classes d'isotopie de semi-tresses à

n brins est un monoïde unitaire pour le produit. Ce monoïde contient le

groupe des tresses Bn comme sous-monoïde. Il sera noté Bn.

Remarque. Contrairement au groupe Bn, le monoïde Bn est très gros,
même pour n petit. Ainsi B0 est isomorphe au monoïde des classes d'isotopie
d'entrelacs orientés, la loi de composition étant la somme disjointe.

Théorème 6-2. Il existe pour tout n > 0 une unique représentation p

du monoïde Bn dans l'algèbre de Hecke Hn (g) A, possédant les propriétés

— p étend la représentation canonique de Bn dans Hn,

— si L+, L_ et L0 sont trois semi-tresses à n brins obtenues à

partir d'une semi-tresse par modifications au voisinage d'un croisement (avec

les mêmes notations que dans le cas des entrelacs), on a

Exemple de semi-tresse à 2 brins :

Comme précédemment, on posera

A /c[c]/1 + ß_ac Z[a, ß, ß 1, c]/1 + ß

k

suivantes :

p(L+) + ßp(L_) - ap(Lo) 0.
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Démonstration. Elle occupera tout le reste du paragraphe.

i) Construction de p.

Soit K le corps de fraction de A. Soit s l'application canonique de Hn

dans A, composée de la trace de Hn dans A et de l'application quotient

de A dans A qui envoie chaque classe ct en c.

Lemme 6-3. L'application qui à u et v de Hn associe s(uv) induit une

forme bilinéaire symétrique non dégénérée sur le K-espace vectoriel Hn ® K.

Démonstration. Posons, pour tout u et v de Hn,<u,v> l'élément

s(uv) de A. Il est clair que le produit scalaire < > est symétrique. Si

l'on quotiente k, A, Hn et A par les relations

a 0 ß — 1

k devient Z, A devient l'anneau Z[cl9 c2,...]> A devient Z[c] et Hn devient

Z[0J. Si a est une permutation de sa classe dans A est le monôme

cf cp22..., où pi représente le nombre d'orbites de a à i éléments. En effet,

si a est un cycle d'ordre n9 il est conjugué à la permutation a1a2 a„_x
et sa classe dans A est cn. Si a est formé de cycles d'ordres qi9 a est

conjugué à une permutation t1t2 où les xf sont des cycles d'ordres qt
et sa classe est le produit des classes cq..

Il en résulte que la classe de a dans Z[c] est égale à cm, m étant le

nombre d'orbites de a. Et le produit scalaire < cr, x > de deux permutations
de est égal à cm, m étant le nombre d'orbites de cru. Soit À le
déterminant de ce produit scalaire calculé dans la base de Z[SJ. On a

a z [/] n cm{°n°)]
>

/ CT

le produit portant sur toutes les permutations de et la somme sur toutes
les bijections de dans lui-même. Le symbole [/] désigne la signature de /
et m(x) désigne le nombre d'orbites de x.

Comme m(x) est majoré par n, quelle que soit la permutation x, le degré
de A est majoré par nn D'autre part, le coefficient de c' dans A est
la somme des nombres [/], / parcourant l'ensemble des bijections de
dans lui-même telles que cr/(c>) ait n orbites quel que soit a, c'est-à-dire
telles que a/(a) soit l'identité quel que soit a. Cet ensemble de bijections
est donc réduit à un élément et le coefficient de cnn- dans A est non nul.
Il en résulte que A est non nul. Or A est la classe du déterminant de
la forme bilinéaire symétrique < > dans le quotient Z[c] de A. On
en déduit que le produit scalaire < > est non dégénéré dans K.
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Soit L une semi-tresse à n brins. Pour toute tresse a de Bn on peut
refermer la semi-tresse La et l'on obtient un entrelacs orienté Ea. On
notera L(a) le polynôme de Jones-Conway de Ea.

Lemme 6-4. L'application F s'étend en une application linéaire, toujours
notée F, de l'algèbre Hn dans l'anneau A.

Démonstration. On étend linéairement F à l'algèbre de groupe &[£„].
Soient a et x deux tresses et i < n un entier. D'après les propriétés du
polynôme de Jones-Conway, on a

L(aafx) — aL(aa;x) + ßL(ax) 0

et F se factorise à travers l'algèbre Hn.

Comme le produit scalaire < > est non dégénéré sur K, il existe un
unique élément U de l'algèbre Hn ® K tel que

Vu g Hn, cF(u) <U,u>
et U ne dépend que de la classe d'isotopie de la semi-tresse L; U sera
noté p(L).

ii) Propriétés de p.

Lemme 6-5. Si L est une tresse x, p(x) est égal à la classe de x

dans Hn.

Démonstration. Soit a une tresse. En refermant la tresse xa on obtient
l'entrelacs Ea. On en déduit que la classe e(xa) dans A est égale à cPEa et

l'on a

cL(a) <x, a>

Comme ceci a lieu pour toute tresse a et donc pour tout élément de

Hn, p(x) est égal à la classe de x dans Hn.

Lemme 6-6. Si L est une semi-tresse à n brins et a une tresse de

Bn, on a

p(La) p(L)p(a).

Démonstration. Soit x une tresse de Bn. Le produit scalaire < p(La), x >
est égal au produit de c par le polynôme de Jones-Conway de l'entrelacs

obtenu en fermant Lax. Il en résulte que < p(La), x > est égal à < p(L), ax >
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c'est-à-dire à <p(L)a, t>. Comme ceci a lieu pour toute tresse x, p(Lcr)

est égal à p(L)p(<r).

Lemme 6-7. Soient L+, L_ et L0 trois semi-tresses obtenues par

modification d'une semi-tresse près d'un croisement. Le croisement étant de signe

positif pour L+ et négatif pour L_ et ayant disparu dans L0. Alors on a

p(^+) + ßp(L_) — ocp(L0) 0

Démonstration. Soit a une tresse. Alors les trois entrelacs obtenus en

fermant L+g, L_a et L0a sont obtenus d'un entrelacs par modifications au

voisinage d'un croisement. D'après les propriétés du polynôme de Jones-

Conway, on a

<p(L+), cr> + ß<p(L_), a> — a<p(L0), a> 0

et l'on en déduit la formule cherchée.

iii) Unicité de p.

Soit L une semi-tresse représentée par une projection régulière sur une
bande [0, 1] x R du plan. Notons Cx, C2,Cn les composantes connexes
de L qui partent de la partie supérieure de la bande en les numérotant
de façon que les points supérieurs des composantes soient placés de la gauche

vers la droite. On notera E l'entrelacs formé des composantes fermées de L.
On dira que L est ascendante si E est en dessous de chaque Q et si,

en parcourant Cx puis C2 et ainsi de suite jusqu'à C„, chaque fois que
l'on croise une portion de courbe déjà vue, on la croise par dessus. Il
est clair que si L est ascendante, l'union des Q est dénouée et L est

isotope à la somme disjointe d'une tresse et d'un entrelacs. Si L est une
semi-tresse il suffit de modifier les positions dessus-dessous de certains
croisements et l'on obtient une semi-tresse ascendante.

Lemme 6-8. Pour toute semi-tresse L à n brins, p(L) appartient à

Hn (g) A.

Lemme 6-9. Soit p' une application de Bn dans Hn (g) A qui
vérifie les propriétés du théorème 6-1. Alors pour toute semi-tresse L, p'(L)
est égal à p(L).

Lemme 6-10. Soient L et L' deux semi-tresses à n brins. Alors on a

p(LU) - p(L)p(L')
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Démonstrations. Ces lemmes vont être démontrés par récurrence sur le

nombre de croisements de L. Supposons donc que les lemmes sont vérifiés

pour toute semi-tresse ayant au plus m — 1 croisements. Soit L une semi-

tresse ayant m croisements. Si l'on modifie un croisement de L (par modification

dessus-dessous) on obtient une nouvelle semi-tresse Lx. Soit L0 la
semi-tresse obtenue en supprimant le croisement. D'après le lemme 6-7, on a

p(L) + ßp(Li) ap(L0) ou ßp(L) + p(Lx) ap(L0)

suivant le signe du croisement considéré. Comme L0 a m — 1 croisements,

p(L0) appartient à Hn® A, p'(L0) est égal à p(L0) et p(L0L') est égal à

p(L0)p(L/). On en déduit que p(L) appartient à Hn ® A si et seulement si

p(LJ appartient à Hn ® A, que p' et p sont égaux en L si et seulement si

ils sont égaux en Ll et que p(LL') est égal à p(L)p(L/) si et seulement si

p(LXL') est égal à p(L1)p(L').
Pour montrer les propriétés cherchées on peut supposer, quitte à modifier

les croisements non ascendants de L, que L est ascendant. La semi-tresse L
est alors isotope à l'union disjointe d'une tresse t et d'un entrelacs E.

Soit <j une tresse. L'entrelacs obtenu en fermant La est l'union disjointe
de E et de l'entrelacs obtenu en fermant t. On a donc

< p(L), a > < x, a > cPE

ce qui implique que p(L) est égal à p(t)cPe et par suite appartient à

Hn® A.

D'autre part, pour tout entrelacs orienté E\ on peut considérer l'image par
p' de l'union disjointe de x et de E'. On construit ainsi un invariant

polynomial d'entrelacs qui vérifie les propriétés du polynôme de Jones-

Conway, sauf la propriété de valoir 1 sur l'entrelacs trivial. D'après l'unicité
du polynôme de Jones-Conway, on a

p'(x{jE') p(x

Comme il en est de même pour p, p et p' prennent la même valeur en L.

Enfin, on remarque que LL' est isotope à l'union disjointe de s et de

xL'. On a donc pour toute tresse a

< p(LL'), a > < p(L'), ax > cPE

ce qui implique

p (LL') p(t)p
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Comme ceci a lieu quel que soit L', on a

p(L) p(t)cPe

et l'on a

p(LL') p(L)p(L').

Les lemmes sont alors démontrés, ce qui prouve que p est une représentation

de Bn dans Hn ® A qui prolonge la représentation canonique de Bn

dans Hni qu'elle vérifie la formule voulue sur les semi-tresses L+, L_ et L0,
et que c'est la seule représentation vérifiant ces propriétés.
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