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REPRESENTATIONS ET TRACES DES ALGEBRES DE HECKE
POLYNOME DE JONES-CONWAY

par Pierre VOGEL

§ 0. INTRODUCTION

La théorie des nceuds et entrelacs classiques a eu, ces derniéres années,
un renouveau considérable dii, en grande partie, a la découverte de nouveaux
invariants polynomiaux. Le premier en date de ces récents invariants est un
polynébme a une variable V construit par V. Jones [9], [10] en 1985 a
l'aide de traces construites sur certaines algebres de von Neumann. Ce
polynéme a été immédiatement généralisé a un polyndme a deux variables P
[6] appelé polynome de Jones-Conway ou polyndome HOMFLY. Un autre
polynome a deux variables K a été egalement construit par Kauffman [13]
un peu plus tard. Les deux polynomes P et K généralisent le polynome
original de Jones, et P généralise également le polyndme d’Alexander [2]
connu quant a lui depuis une cinquantaine d’années.

Si le polynome d’Alexander est parfaitement compris et a été trés utile
pour létude du complémentaire du neceud ou de I'entrelacs, la situation est
quelque peu différente en ce qui concerne les autres polyndmes. Ils sont tout
d’abord tres précis, en ce sens qu’ils permettent de distinguer de nombreux
nceuds indiscernables par T'utilisation seule du polyndme d’Alexander, par
exemple les nceuds de tréfle droit et gauche. Ils sont, de plus, trés bien
adaptés a I'étude de certaines familles de neeuds ou d’entrelacs. Par exemple
le polynome de Jones, grace a une trés jolie construction de Kauffman, a
permis a Kauffmann et Murasugi [16] de montrer certaines conjectures sur
les nceuds alternés, vieilles de plus d’un siécle.

En un certain sens, on peut dire que ces polyndmes sont des témoins
extrémement précis de la forme géométrique des nceuds et des entrelacs. Ils

restent cependant trés mystérieux. Par exemple les questions suivantes sont,
a heure actuelle, toujours sans réponse :

— Quelles sont les significations géométriques exactes des polyndmes P
et K? Est-il possible, comme pour le polyndéme d’Alexander, de les décrire
a I'aide du type d’homotopie du complémentaire ?
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— Existe-t-11 un nceud non trivial avec un polynéme P ou K trivial?
On connait actuellement des nceuds distingués par P et non par K ainsi
que des nceuds distingués par K et non par P. En ce sens aucun des
deux polyndmes P et K n’est conséquence de autre. On connait également
des nceuds qui ne sont distingués ni par P ni par K. Cependant, dans tous
ces exemples, ces neceuds sont non triviaux, et 'on ne sait pas si P ou K
ou les deux, permettent de déterminer si un nceud est ou n’est pas dénoué.

— On sait que si un nceud K est slice, c’est-a-dire qu’il borde un disque
dans la boule B* le polyndme d’Alexander A(t) du nceud est de la forme
P(t)P(t™') ou P est un polyndme en t a coefficients entiers. Est-ce qu’un
phénomeéne du méme genre a lieu pour le polynéme P ou le polyndme K ?
On sait que cette propriété du polyndme d’Alexander ne se généralise pas
telle quelle, car on connait des nceuds slices pour lesquels les polyndmes de
Jones-Conway sont irréductibles et non triviaux. Cependant, il est possible
que le fait qu’un nceud soit slice impose a son polyndéme de Jones-Conway
ou son polyndome de Kauffman certaine condition algébrique.

— Quelles sont les formes possibles pour les polyndmes P et K d’un
neeud ou d’entrelacs? Comme ces polyndmes prennent en certains points des
valeurs bien précises, ils ne sont absolument pas quelconques.

Il y a a ce jour essentiellement deux méthodes pour construire les
polyndémes de Jones-Conway et de Kauffman. La premicre consiste a définir
le polynome P d’un entrelacs représenté par une projection réguliére sur le
plan, récursivement sur les projections de plus en plus complexes. Puis a
montrer que ce polyndome ne dépend pas des choix que I'on a été obliger
de faire et qu’il ne change pas si 'on effectue des modifications élémentaires
de type Markov sur la projection de I'entrelacs. L’avantage de cette méthode
est quelle est totalement élémentaire et n’utilise aucun outil théorique
complexe. L’inconvénient est qu’elle n’offre aucune vision un tant soit peu
globale de ces invariants. Conceptuellement elle n’explique rien. La deuxiéme
méthode utilise des résultats d’Alexander et de Markov qui raméne le
probléme de la construction d’invariants sur les entrelacs a celui de la
recherche de certains invariants sur les tresses. Or, les groupes de tresses B,
admettent des représentations dans certaines algebres; en particulier dans les
algébres de Hecke et les algebres de Brauer. On peut alors chercher des
invariants sur les entrelacs en construisant certaines traces sur les algébres de
Hecke ou sur les algebres de Brauer. Les résultats de Jones, Ocneanu pour
I'algébre de Hecke [9] et de Kauffman [13], Birman et Wenzl [4] pour
I'algébre de Brauer montrent que ces traces existent et sont uniques. Comme
ces traces sont a valeurs dans un anneau de polyndmes a deux variables
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on en déduit Iexistence des deux polynémes P et K. Cette derniére méthode
est en un certain sens plus globale, mais elle peche encore sur un point.
Elle nexplique pas vraiment ce que sont ces traces ni quelle est leur signi-
fication.

Le but de cet article est de donner un nouvel éclairage sur cette dernicre
construction du polynéme de Jones-Conway. Si 'on considere toutes les
traces sur lalgébre de Hecke, H, on remarque quelles proviennent d’une
trace universelle & valeur dans un module A,. De plus, la juxtaposition de
tresses induit des applications de H, ® H, dans H,,, et de A, ® A,
dans A,,,, ce qui fait de la somme directe des modules A, une algebre
commutative graduée. On montre alors que cette algébre est une algebre de
polynémes en des variables c; € A;. Si I'on spécialise les coefficients qui defi-
nissent les algébres de Hecke d’une certaine fagon, celles-ci deviennent les
algébres des groupes symétriques S,, et les classes c¢; correspondent aux
classes de conjugaison de cycles d’ordre i dans ;.

Ainsi, pour toute tresse T de B, sa trace #(t) est un polyndome en les
classes ¢; homogéne de degré n, 'anneau des coefficients étant lui-méme un
anneau de polyndmes a deux variables. On montre alors que le polynéme de
Jones-Conway de l'entrelacs associé a la tresse tT est, & un scalaire ¢~ '
pres, le polyndme t(t) ou I'on a donné a tous les ¢; une certaine valeur c.
Si 'on spécialise les variables de fagon que les algebres de Hecke deviennent
les algébres des groupes symétriques, le polyndéme ¢(t) devient simplement un
mondme [[¢,, si la permutation o associée a t est formée de cycles

d’ordre n; ; Si T'on identifie de plus les classes c;, t(t) devient égal a c”,
n ¢tant le nombre d’orbites de o, c'est-a-dire le nombre de composantes
connexes de l'entrelacs associ¢ a 1. En ce sens, le polyndme de Jones-
Conway peut etre considéré comme une déformation de I'application qui, a
tout entrelacs a n composantes, associe ¢"~ .

En plus des traces universelles sur les algebres de Hecke H,, on construit
des traces associées a des représentations explicites associées a chaque
partition de n. Ces représentations ne proviennent pas des diagrammes de
Young. Le point de vue est direct et assez différent de celui de Jones [11]
et de Wenzl [18]. La trace de Jones-Ocneanu peut s’exprimer explicitement
en fonction de ces traces.

Enfin, on montre que la représentation du groupe des tresses B, dans
'algebre de Hecke H, s’étend a un monoide ﬁ,, contenant B, et formé de
tresses généralisées (appelées semi-tresses), une semi-tresse étant une variété
différentiable compacte L de dimension 1 contenue dans la bande [0, 1] x R?
de Tespace et standard sur le bord, c'est-a-dire que OL est égal a
d[0,1] x {1, 2, ..,n} x 0 avec des orientations compatibles.
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§ 1. UNE DESCRIPTION DU POLYNOME DE JONES-CONWAY

Soit B, le groupe des tresses a n brins. Ce groupe est engendré par les
éléments c,, G,, .., 0,_, et o; est la tresse élémentaire qui croise le i-iéme
et le i + 1-iéme brin de la fagon suivante:

De plus, deux de ces tresses o et ¢’ commutent si elles ne sont pas
d’indices consécutifs, et vérifient la formule suivante dans le cas contraire:

cc'c = ¢'oo’

On a ainsi un systeme complet de générateurs et relations du groupe B,.

Les groupes B, et B; sont triviaux et le groupe B, est commutatif
libre de rang 1. Les groupes B, sont non commutatifs pour n > 2.

Soient p et g deux entiers positifs ou nuls. Soient ¢ et t deux tresses a p
et g brins. On peut alors juxtaposer ces deux tresses et obtenir une nouvelle
tresse & p + ¢ brins que 'on notera ¢ x 1. Ceci définit ainsi un morphisme
de groupes de B, x B, dans B,,,. Il est facile de vérifier que ce produit
est associatif et unitaire, d’'unité 1, € B,, en notant pour tout i > 0, 1, Punité
de B;.

D’autre part, si T est une tresse de B,, on peut fermer T en connectant
les extrémités supérieures de la tresse a ses extrémités inférieures, et cela sans
rajouter de croisements. On obtient de ce fait un entrelacs orienté .

Exemple :

\) Vv a

3 .

J

Ceci nous donne une application ~ de I'union disjointe B des groupes B,,
n > 0, dans I'ensemble E des classes d’isotopie d’entrelacs orientés. Le




POLYNOME DE JONES-CONWAY 337

théoréeme d’Alexander [1], [15] montre que cette application est surjective.
' Le théoréme de Markov [15] dit, plus précisément, que E s’identifie, via
~ P'application ~, au quotient de B par la relation d’équivalence = engendrée
par:

Vo,1€B,, O©T=10C
VoeB,, o =(cxl)o,=(@xl)o,"’.
Définition 1-1. On appellera bi-algébre graduée, une suite d’algebres

A,,n > 0, sur un anneau commutatif k, munies d’applications p,, de 4, ® 4,
dans A, ,, qui vérifient les proprietés suivantes:

|
I
i

— Les applications p,, sont des morphismes de k-algebres.

— Elles sont associatives:
VxeA,, Vyed,, V2 Ay, Wt pg(Hup(X®Y)®2) = Lyt o(x®pg (y®2)) -
— FElles ont un ¢lément neutre:
Vxed,, X = Pou(lo®X) = Pyo(x®1,) .

Une telle bi-algebre sera simplement notée A4, , et le produit p sera noté x.

Définition 1-2. Soit A, une bi-algebre graduee. On appellera représen-
tation des groupes de tresses dans A, , une suite p,,n > 0, telle que:

— pour tout n > 0, p, est une représentation du groupe B, dans le groupe
des unités de A4,,,

— ces représentations p sont compatibles avec les produits x.

Exemples. On a une représentation universelle en posant:
Vn >0, 4, = k[B,]

et en étendant le produit x a tout 4, .

On peut également considérer les algebres: A, = k[S,], et prendre les
representations canoniques de B, dans S, .

Soit k 'anneau Z[o, B, B~ *]. Soit H, la k-algébre quotient de k[B,] par
Iidéal bilatere engendré par les éléments:

6 —oac; +B0<i<n

PROPOSITION 1-3.  Les algébres H, forment une bi-algébre graduée et les
applications canoniques de B, dans H, forment une représentation des
groupes de tresses.
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Démonstration. 11 suffit de remarquer que les applications x de
k[B,] ® k[B,] dans k[B,.,] passent au quotient et définissent des appli-

cations de H, ® H, dans H,,,.

Remarque. Les algebres H, sont en fait des algebres de Hecke formelles.
Si dans la définition de H,, on remplace k par un corps K, avec o = g — 1
et B = — g, ou g est un parametre de K, on obtient exactement lalgebre
de Hecke classique.

ProPoSITION 1-4.  Soit A, une bi-algébre graduée sur un anneau commu-
tatif k. Alors les k-modules Hy(A,) forment une k-algebre unitaire graduée.

Démonstration. Si A est une k-algébre, le groupe d’homologie de
Hochschild Hy(A) est un k-module quotient de 4 par le sous-k-module
engendré par les ¢léments de la forme ab — ba, a et b parcourant 4. On
désignera par t l'application quotient de A dans Hy(A4). On peut voir ¢
comme la trace universelle sur A. Il n’est pas difficile de vérifier que H,
est un foncteur de la catégorie des k-algeébres dans la catégorie des k-modules.
De plus, si A et B sont deux k-algébres, Hy(AQRB) est canoniquement
isomorphe a Hy(A4) & Hy(B).

Il en résulte que le produit x de 4, ® A, dans A,,, induit un produit de
Hy(4,) ® Hy(A,) dans Hy(A,,,). Ce produit est clairement associatif et
possede t(1,) comme unité.

Dans toute la suite on désignera par A, le k-module Hy(H,). La k-algebre
graduée formée des modules A, sera notée A. L’application canonique ¢
de H, dans A, sera notée t,. Enfin, on désignera par ¢, I’élément
t,(c6,0,..0,_4)de A,.

THEOREME 1-5. L’algebre A est lalgebre des polynomes sur k en les
variables c¢;,i = 1.

THEOREME 1-6. Soit I wun sous Z-module de A. Soit f Tapplication
de la somme disjointe des groupes de tresses B, dans A/, déduite de la
représentation des groupes de tresses dans H, et des applications t,.
Alors pour toute tresse o, f(c) ne dépend que de lentrelacs G, si et
seulement si I contient lidéal J de A engendré par les éléments:

¢ —ci=z2, c(l+P—oacy).

Remarque. Soit I, lidéal de A engendré par les éléments ¢; — ¢y .
Alors A/;, est isomorphe a l'algébre k[c] = Z[o, B, B~ 7, c], ¢ représentant la
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classe commune des éléments ¢;. Si maintenant T est une tresse de B,, n > 0,
la trace t,(t) est un élément homogeéne de A de degré n et sa classe
modulo I, est de la forme cP ou P est un polynéme de k[c]. Il en
résulte que la classe de t,(t) modulo J est représentée par cP’, ou P’
est egal a la classe de P modulo 1 + B — ac. Le polyndme P’ appartient
donc a l'anneau A quotient de k[c] par 1 + B — ac. Cet anneau est
isomorphe au sous-anneau de Z[o, o~ %, B, B~ '] engendré par o, B, B~ et
(1+B)a L

THEOREME 1-7. Soit A le sous-anneau de Z[o, 0”1, B, B~ 1] engendré
par o, B, B et ¢ = (1+B)a~t Alors il existe pour tout entrelacs orienté
E un polynome Py de A tel que:

— Py ne dépend que de la classe d’isotopie de E.
— Si E est le neud trivial, le polynéme Py est égal a 1.

— Si E.,E_ et E, sont trois entrelacs orientés ayant la méme forme
excepté prés d'un croisement ou ils ont les configurations suivantes :

Lo XX

on a
(F) PE+—0‘PEO+BPE_:0-

De plus, si E provient d’'une tresse e B,, et si la trace t,(c) est
un polynéme P(a, B, c,,c,,..), ona

P(o, B, c,c,...) = cPgo, B).

Remarque. Le polyndome Py est, & un changement de variables pres, le
polynéme de Jones-Conway (ou polyndme HOMFLY) de E. Le changement
de variable dépend de la forme que I'on veut obtenir pour la formule (F).
Si on veut, par exemple, que (F) prenne la forme suivante :

xPg, + yPg_ + zPy, = 0
on doit poser

o= —zx! PB=yx?

: et Py est un polyndme a coefficients entiers en zx ™1, yx =%, xy~ ! et (x+y)z™ L
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§ 2. REPRESENTATIONS DES ALGEBRES DE HECKE

Dans toute la suite, on désignera par K l'extension quadratique de
Panneau k définie par

K = k[x]/ﬂ—ak-{—ﬁ'
On posera également p = oo — A. On a donc
o= A+ K, B = )\'“7

et K est 'anneau des polynomes de Laurent a coeflicients entiers en les
variables A et p.

Soit n un entier positif. On désignera par X, lensemble {1,2,..,n}
et Pon notera M le K-module librement engendré par lensemble F, des
fonctions de X, dans Z. Soit i un entier compris strictement entre 0 et n.
On notera s; 'application linéaire de M dans lui-méme définie par:

Af og; st f(i) < f(i+1)
VieF,, s(f) = rf st f@i) = fi+1)
A+wf —pfeg st f@) > f(i+1)

ou g; désigne la permutation de X, qui échange i et i + 1.

LEMME 2-1. Les endomorphismes s; vérifient les formules suivantes:

s? —as; + B =0,

Vi,j<n, ]>l+ 1 = SiSj:SjSi

j =i+1 = SiSjSi = SjS,:Sj.

Démonstration. La deuxieme formule est évidente car les supports des
permutations ¢; et ¢; sont disjoints. La premiere formule a vérifier sur une
fonction f est évidente si f prend les mémes valeurs en i et en i + 1.
Il y a donc essentiellement les cas f(i) > f(i+1) et f(i) < f(i+1) et chacun
de ces cas se montre aisément. Quant a la derniére formule, il faut considérer,
pour une fonction f de F,, les différentes positions respectives de f(i),
f(@i+1), f(i+2). Lorsque deux de ces nombres sont égaux, la formule est
facile a vérifier. Sinon il reste a priori six cas a examiner. A ce stade il
est plus facile de poser:

Va,beZ, a<b = [ab] =0 <a,b> = A
a>b = [abl=A+p <ab>

I
l
=
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On a alors, si f(i) est différent de f(i+ 1),

si(f) = [f@), fG+DIf + <fG), fG+1) > feoe.
Désignons par a, b et ¢ les trois nombres f(i), f(i+1) et f(i+2) que
on suppose distincts. On vérifie les formules suivantes:
5;5;5:(f) = ([a, b1%[b, a] + [a, ] <a,b> <b,a>)f
+ ([a, b] [b, ] <a,b> + [a,c][b,a] <a, b>)f o g
+ [a, b] [a,c] <b,c>fc¢g; + [a,b] <a,c> <b,c>f o g;¢g;

+ [b,c] <a,b> <a,c>f o g¢;

+ <a, b> <a,C> <b,C>f08i8j8i,

5;5:5;(f) = ([a b1 [b, c]* + [a,¢] <b,c> <c¢, b>)f
+ ([a, b] [b, c] <b,c> + [a,c][c, b] <b,c>)f og;
+ [a,c] [b,c] <a,b>fo¢g + [a,b] <a,c> <b,c> f o g¢g
+ [b,c] <a,b> <a,c>f ogs;
+ <a,b> <a,c> <b,c>f oggE;.

Il nest alors pas difficile de vérifier que les deux expressions sont égales
quelles que soient les positions respectives des trois nombres a, b et c.

COROLLAIRE 2-2. Il existe une représentation de [lalgéebre H, dans
Palgebre des endomorphismes de M, qui envoie les générateurs o; de
H, en lendomorphisme s;. De ce fait M devient un H, -module.

Soit @ une application a support fini de Z dans N. On appellera
poids de ¢ le nombre ) o(p). Soit M(p) le sous-module de M (n étant

eZ .
¢gal au poids de @) engeﬁdré par les fonctions f de F, telles que
VpeZ, o(p) = card(f '(p).

PROPOSITION 2-3.  Pour toute fonction ¢ de Z. dans N, a support fini,
le sous-module M(¢p) de M est un H, -module.

Démonstration. Evidente.

Soient p < n des entiers strictement positifs. On notera X, I'ensemble des
€léments de H, de la forme: 6,_,0,_, .. 0;,avec 1 < i < p. Siiest égal a 1,
cet element est égal 4 1. On notera S, l'ensemble des éléments de H,
de la forme: 1,71, ... T,, chaque élément t; appartenant a ¥,. L’ensemble S,

~ posséde p! éléments. L'importance de cet ensemble provient du résultat
. classique suivant:
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PROPOSITION 2-4. L’algébre H, est un k-module libre de base S,.

Démonstration. Soit p < n un entier strictement positif. Notons, pour
tout i compris entre 1 et p (au sens large), 1; I'élément c,_,6,_, .. C;.
I1 est facile de vérifier les formules suivantes:

o;T; st j<i—1
Vi<pVj<p10;= T; si j=i—1
Ci—1T; st j>i.

Il en résulte que le sous-module de H, engendré par S, est stable par
multiplication a droite par tous les générateurs o; de H,, ce qui prouve
que H, est engendré linéairement par S,,.

Soit maintenant ¢ lapplication de Z dans N, de support {1,2,.., n}
et qui vaut 1 sur son support. Le K-module M(p) est alors isomorphe a
'anneau du groupe symétrique K[S,]. Soit f, 'inclusion de {1, .., n} dans Z.
La multiplication a droite par f, induit une application K-linéaire y de
H, ® K dans M(p). Si 'on tensorise ces modules par Z au-dessus de K,
via le morphisme de K dans Z qui envoie A et pen l et — 1, H, ® Z
devient Z[S,] ainsi que M(p) et y devient l'identité. On en déduit que
v(S,) est une base de M(p) ® Z et un systeme libre de M(yp). Ce qui
prouve que S, est une base de H,,.

COROLLAIRE 2-5. Pour tout entier n > 0,H, est un H,_,-module a
gauche libre de base X, = {1,0,_1, ., Gy_1C,—5 .. C1}.

COROLLAIRE 2-6.  Pour tout n > 0, H,,, estun H,bimodule isomorphe a

H,®H, ® H,.
Hp,-

Démonstration. L’isomorphisme provient de la stabilisation i de H,
dans H,,, et de l'application de H, x H, dans H,,; qui a (u, v) associe
i(wo,i(v). L’application qui s’en déduit respecte les bases (pour la structure
le H,-module a gauche). C’est donc un isomorphisme.

§ 3. TRACES DES ALGEBRES DE HECKE

Soit » > 0 un entier. Via la stabilisation i de H, dans H,,,, H,,
est un H,-bimodule. On peut donc considérer le module E, = Hy(H,, H, . ),
quotient de H,,, par le sous-module engendré par les éléments de la forme:

|
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ax —xa, aci(H,), xe€H,.;.

Comme précédemment, le produit x induit un produit associatif de
A, ® E, dans E,,, et E est un A-module gradue.

PROPOSITION 3-1. L’application qui, @ tout élément xe€ H,, associe
Pélément (xx1,)o, de H,.,,1 étant lunité de H,, induit pour tout
n> 0 une application de E,_, dans E,. Cette application sera notée 0.

Démonstration. 1l suffit de remarquer que o, € H,,; commute avec tout
élément stabilisé d’un éléement de H,,_, .

Notations 3-2. On désignera par s, la classe de 1€ H; et, pour tout
n > 0, on posera

Sn = e(sn—l)‘

L’application quotient de E, dans A,,; sera notée f; f est une forme
A-linéaire surjective, et lon a: Vn = 0, f(s,) = Cp+1-

PROPOSITION 3-3. E est un A-module libre de base {sq, Sy, S5 ...}
Démonstration. D’apres le corollaire 2-6, on a

En = An @ HO(HnaHn ® Hn)
Hn

-1

Il n’est pas difficile de montrer que Papplication de H, ® H, dans H, qui

a u® v associe vu induit un isomorphisme de Hy(H,, H, & H,) sur
Hn—l
HyH,_ ,,H,) = E,_;. Ce qui montre que Papplication de A, @ E,_, dans
E,, qui a u @ v associe us, + 9(v), est un isomorphisme.
On en déduit, par récurrence sur n, la formule

En = AnSO @ An_lsl @ @ AOSn 5

ce qui montre le résultat cherché.

LEMME 3-4. L’algébre A est engendrée par les éléments c;,i > 1.

Démonstration. La formule

En == AnSO @ An_lsl @ _— @ Aosn

montre que A, ; ; est engendre par les sous-modules A, _;c;,,, pour i variant
de 0 a n. Comme ceci a lieu pour tout n > 0, on en déduit le résultat.

25
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LeEMME 3-5. L’algébre A est commutative.

Démonstration. Soient ¢ et T deux tresses. Comme les tresses o X T
et T X o sont clairement conjuguées, les traces de ¢ et de t commutent
dans A. Comme de plus les classes ¢; proviennent de tresses, A est commutatif.

Soit ¢ une fonction de Z dans N a support finii Le module
M(p) (voir §2) est un module libre de dimension fini sur I’anneau
K = Z[AM A7 p,u™ '] et lalgébre H, (n étant égal au poids de o) agit
sur M(¢p). Pour tout ¢lément u de H, on notera t,u) la trace de l'endo-
morphisme de M(p) induit par la multiplication par u. Comme ¢, est
linéaire et prend la méme valeur en uv qu'en wvu, t, induit une application
lin¢aire T, de A, dans K que I'on prolongera par O sur tous les modules
A,, p # n. Ainsi, Papplication T, est une application k-linéaire de A dans K.

LEMME 3-6. On a la formule :
Ty(c,) = A+ p)t !

k désignant le cardinal du support de .

Démonstration. Soit S le support de ¢. Cest une partie de Z a k
éléments. Par définition M(¢p) a une base B(¢p) formée des fonctions f de
X, ={1,2,..,n} dans S telles que pour tout i de S, f prend la valeur i
exactement @(i) fois. Si 'on munit M(¢p) d’'un produit scalaire < , > tel
que B(o) soit une base orthonormee, on a

Tq,(cn) = Z <f, 8185 e 8= 1(f)> .

JeB(p)

Soit f un ¢lément de la base B(p). L’¢lément s,_(f) est de la forme
af + bf og,_,, b étant supposé nul si f prend les mémes valeurs en n
et en n — 1. Comme la valeur de f og,_; en n n’est pas modifiée apres
action des éléments s;,i < n — 1, on a

<f,5185 .. 8, 1(f)> = a<f, 8185 . S,_o(f)> .

Si f(n—1) est strictement inférieur a f(n), a est nul. Sinon a est égal a A
ou A + p suivant que f(n—1) est égal ou non a f(n). En itérant ce
raisonnement de proche en proche, on vérifie la formule

0 si di<n telque f(i)< f(i+1)

<f, 182 ... Sn—l(f)> = { }\’P(}L_}_H)q sinon R

p (resp. q) étant égal au nombre d’entiers non nuls i < n tels que f(i)
et égal (resp. strictement supérieur) a f(i+ 1).
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Si la suite f(l),.., f(n) est décroissante, g est égal au cardinal de
image de f diminué d’une unité, et p est égal & n — 1 — g. Comme de
plus la base B(p) ne contient qu’une seule fonction décroissante, on vérifie
aisément le lemme.

PROPOSITION 3-7. Soit ¢ wune fonction de Z dans N de poids
n=p+gq. Soient u et v deux éléments de A, et A,. Alors on a

T(p(uv) = zTcp’(u)Y:p—(p'(v) s

la sommation ayant lieu sur toutes les fonctions ¢  de poids p, comprises
au sens large entre 0 et .

Démonstration. Désignons par H, x H, I'image par I'application x de
H,® H, dans H,. Le module M(¢p) est isomorphe, en tant que H, x H,-
module a la somme directe des modules M(¢') ® M(p—@’), @ appartenant
a I'ensemble des fonctions de poids p et comprises entre 0 et ¢. Soient x
et y des représentants de u et v dans H, et H,. Comme la trace de
u @ v agissant sur M(¢') ® M(p— ') est égal au produit de la trace de u
agissant sur M(o’) par la trace de v agissant sur M(p— '), on obtient
le résultat cherché.

COROLLAIRE 3-8. Soit @ une fonction a support fini de Z dans N.
Soit & une bijectionde Z dans Z. Alors les formes linéaires T, et T
sont égales.

Qo

Démonstration. D’apres le lemme 3-6 T, et T,,., prennent la méme valeur
sur les €léments ¢, de A. D’aprés la proposition 3-7, si, pour tout e,
T, et T,, prennent les mémes valeurs en u et en v, elles prennent, pour
tout @, la méme valeur en uv. On en déduit que T, et T
quel que soit .

Il en résulte que T, ne dépend que de la partition du poids n de @
en les nombres @(p). Cette partition est caractérisée par la suite finie

Pi, P2, - p; désignant le nombre de fois ou ¢ prend la valeur i. On notera
alors T, sous la forme T, ou u est le mot ¢?' c5> ... .

0oe SONt égales

§4. LA TRACE T

Soit x = (x;) une famille de symboles. On désignera par A(x) lalgebre
. des séries en les x; a coefficients dans K = Z[A, A~ ', p, p~!]. Un élément de
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A(x) est donc une combinaison linéaire finie ou infinie de mondomes finis
en les x;, a coefficients dans K. En affectant a chaque x; un degré 1,
A(x) devient une algébre graduée. Si x et y sont deux familles de symboles,
A(x, y) désignera l'algebre A(z), z étant I'union disjointe des deux familles.

Le i-ieme polyndme symétrique élémentaire en les variables x; sera noté
¢;(x). L’algebre des séries symétriques de A(x) est donc I'anneau gradué des
séries formelles K[ [c;(x), c(x), ... 1], c;(x) étant affecté du degré i.

Soit x une famille de symboles indexée par Z. Les éléments c;(x) seront
notés ¢;. On définit alors une application T de A dans K[c¢y,c,,..] de
la fagon suivante:

Vn=0, Vued,, T =) T,u]l]x?,
03 i

la sommation ayant lieu sur toutes les fonctions ¢ a support fini de Z dans N.
Pour tout u de A,, T(u) est une séric homogéne de degré n et symé-
trique, c’est donc un polynéme homogéne de degré n en les ;.

THEOREME 4-1. T est un morphisme de k-algébres graduées de A dans
K[cy,cy,...] et les images par T des classes ¢; de A sont données
par la formule suivante :

1+ px; 1+ pey + plcy + .
1 A T(c;) = =
) iZO (@) 1:11 — Ax; 1 — hey + APcy — .

Démonstration. 11 est clair que T est k-lincaire. Le fait que T
respecte le produit est conséquence de la proposition 3-7. D’apres le lemme 3-6,
on a pour tout n > 0,

O+WT(C) = ¥ A0+t [T x50,

la sommation ayant sur toutes les fonctions ¢ de poids n de Z dans N,
k désignant le cardinal du support de .

Si a est un entier de N, désignons par a le nombre qui vaut 0 ou 1
suivant que a est nul ou non. Le cardinal k du support de ¢ est donc

égal a la somme des nombres ¢(i) et I'on a

L+ (4w Y Tl) = Y TTA+ph™ D (hx,)*@,

i>0

la somme ayant lieu sur toutes les fonctions ¢ a support fini de Z dans N.
Ce qui implique
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L+ Ok Y () =[] Y (a0

i>0 i az0

o Ax
= H<1+(1+u7\ )I—_—Tx—)

1

H1+pxi_1+ucl+p2c2+...
_il—XXi_l—)\‘Cl-i-}\,zCz—..

4-2. Démonstration du théoréme 1-5. On sait déa que l'algébre A est
engendrée par les classes ¢;, i > 0. Or, modulo les décomposables de I'algebre
K[c,,c5,..],0ona

14+ 04w Y T(e) = (L+pc; +p2c,+..) (T+Aey —A%cy +..)

i>0

=1+ Ape, + =AY, + WP +A%)cs + ..

T(c;) est donc, modulo les décomposables de K[c, c,, ... ], un multiple non
nul de ¢; et les éléments T(c;) sont algébriquement indépendants. Il en est
donc de méme des classes ¢; de A et A est la k-algébre des polynomes
en les variables c;.

Il est possible de donner une forme assez concise de la trace T de la
fagon suivante. Soient x et y des familles de symboles. Si f est une série de
I'anneau A(x, y), symétrique en x et en y, f est une combinaison linéaire
de mondémes de la forme wuv, u étant un mondme en les éléments c;(x)
et v un monoéme en les éléments c;(y). Si 'on remplace dans chacun de
ces monomes, u par le mondme correspondant en les classes c¢; et v par
Papplication T, ou v est obtenu en remplagant dans v chaque c¢;(y)
par la classe c¢;, on obtient une application linéaire de K[c,, ¢,,..] dans
lui-méme que I'on notera f .

THEOREME 4-3. La trace T est égale a f, [ étant la série
[ = 1;[ (1+xiyj) .
Démonstration. Par définition la trace T est égale a f , avec
f=§%@ﬂxw,

u(p) étant le mondme cy(y)P'c,(y)P? ... et p; désignant le nombre de fois ou [0
prend la valeur i. C’est-a-dire que 'on a

u(p) = H Co(y)  en convenant que co(y) est égal a 1.
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Et cela implique

[ = ZH%(i)(J’)x(ip(i) = H Z (y)xi HH (L+x;;) -

i n>0 i

§ 5. LA TRACE DE JONES-OCNEANU

On se propose ici de montrer les théorémes 1-6 et 1-7.

5-1. Soit donc = une relation d’équivalence additive sur A possédant la
propriété suivante:

(P) Vn > Oa quHn’ tn(u) = tn+1[(ux 11)0,,] — tn+1[(ux 11)6;1] .

Comme o, *est égala ap™! — B~ 'o,, 0n a

tyr1[(ux 1o, '] = af " tegt, () — BT, [(ux 1)o,].

D’autre part, 'application de H, dans H,,,; qui a u associe (uxl,)o, induit
I'application 0 de E,_; dans E, (voir 3-2). La propriété (P) est donc
équivalente a4

Vo> 0,YueE,_,, fw= fOu=of tc,f(u)— B 'f(Ou),
c’est-a-dire
VueE, f)=fOw et (I+B—ac)fu)=0),

f désignant la projection canonique de E sur A.
D’autre part, E est un A-module libre de base (sq, $;,5,,..) et 'on a

\V,n > 0, eSn = Sn+1 et f(Sn) = Cn+1 ”
La propriété (P) est donc équivalente a
Vn >0, YueA, uc,=uc,,; et uc,(1+p—0ac,) =0,

et la plus petite relation = vérifiant la propriété (P) est donc la congruence
modulo I'idéal J de A engendré par les ¢léments

¢, —¢c;, n>1 et ¢ (1+B—0acy),
ce qui achéve de démontrer le théoréme 1-6.

5-2. Soit T une tresse de B,,n > 0. La classe de t,(t) modulo I'idéal I,
de A engendré par les €léments ¢; — ¢, est de la forme cP, ou ¢ représente
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la classe commune des ¢; et P est un polyndme de k[c] = Z[e, B, B~ cl.
Il en résulte que la classe de t,(tr) modulo J est représentée par cP’, P’
désignant la classe de P dans anneau A = k[c]/y+p-q . D’aprés les théo-
rémes d’Alexander et Markov, le polynéme P’ ne dépend que de 'entrelacs T.
On a ainsi associé & tout entrelacs orienté E un polyndéme Pp = P’ de
Panneau A. Cet anneau est en fait le sous-anneau de k[o, o™ 1, B, B 1]
engendré par o, B, B~ et (1+ B L.

Si x est un croisement d’un entrelacs E dessiné dans le plan, la méthode
d’Alexander permet de modifier le dessin de E sans changer le croisement x
de facon a obtenir un entrelacs E’' isotope a E et de la forme T, ou «t
est une tresse de B,. Il en résulte que les trois entrelacs E,, E_ et E,
obtenus par modification de E au voisinage de x sont isotopes a des
entrelacs de la forme 7., T_ et T, ot 'on a

—1_n 11

. =701, 1. =701, 1,=11.

On a alors dans I'algebre H, I’égalité suivante:
T, —aTg + Pt =0,
ce qui implique

PE —CXPEO+BPE_=O

+

Si E est le nceud trivial il est de la forme Il et la classe de 1, dans
le quotient de A par I, est égal 4 ¢. On a donc

PE:1

et le théoréme 1-7 est alors clair.

§ 6. UNE GENERALISATION DU POLYNOME DE JONES-CONWAY

Soit n > 0 un entier. Soit L une sous-variété différentiable compacte
orientée de dimension 1 de I’espace usuel R? entiérement contenue dans la
bande [0, 1] x R* On suppose que le bord de L est standard. C’est-a-dire
quil est formé des 2n points de coordonnées (i,j,0) avec i = 0, 1 et j
variant de 1 4 n. On suppose de plus qu'en chacun de ces points, le
vecteur tangent a L est vertical descendant, c’est-a-dire a projection nulle

sur le plan horizontal 0 x R? et 4 projection negative sur Paxe vertical
R x 0.
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Définition. Une telle variété L sera appelée semi-tresse a n brins. Deux
semi-tresses a n brins seront dites isotopes s’il existe une isotopie de la bande
[0, 1] x R? fixe sur le bord qui envoie 'une sur I'autre.

Sotent L et L' deux semi-tresses & n brins. En recollant les deux bandes
I'une au-dessus de I'autre (celle contenant L étant au-dessus), on obtient une
nouvelle semi-tresse. Cette semi-tresse sera appelée produit de L par L’ et
notée LL'.

PROPOSITION 6-1. L’ensemble des classes d’isotopie de semi-tresses d
n brins est un monoide unitaire pour le produit. Ce monoide contient le
groupe des tresses B, comme sous-monoide. Il sera noté B,.

~

Remarque. Contrairement au groupe B,, le monoide B, est trés gros,
méme pour n petit. Ainsi B, est isomorphe au monoide des classes d’isotopie
d’entrelacs orientés, la loi de composition étant la somme disjointe.

Exemple de semi-tresse a 2 brins: [-:I j ’

Comme précédemment, on posera

A = k[c]/l-i-(}—ac = Z[a, B: B——la c]/l—i—B—aC'

THEOREME 6-2. Il existe pour tout n > 0 une unique représentation p
du monoide 1§,, dans lalgebre de Hecke H, ® A, possédant les propriétés
k
suivantes :
— p étend la représentation canonique de B, dans H,,

— si L,,L_ et L, sont trois semi-tresses d n brins obtenues a
partir d’'une semi-tresse par modifications au voisinage d’un croisement (avec
les mémes notations que dans le cas des entrelacs), on a

p(L;) + Bp(L-) — ap(Ly) = 0.
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Démonstration. Elle occupera tout le reste du paragraphe.
i) Construction de p.

Soit K le corps de fraction de A4. Soit € I'application canonique de H,
dans A, composée de la trace de H, dans A et de I'application quotient
de A dans A qui envoie chaque classe c; en c.

LEMME 6-3. L’application qui & u et v de H, associe &uv) induit une
forme bilinéaire symétrique non dégénérée sur le K-espace vectoriel H, ® K.

Démonstration. Posons, pour tout u et v de H,, <u,v> I¢lément
guv) de A. Il est clair que le produit scalaire < , > est symétrique. Si
I'on quotiente k, A, H, et A par les relations

«a=0, Pp=-1,

k devient Z, A devient anneau Z[c,, c,, ..], A devient Z[c] et H, devient
Z[S,]. Si o est une permutation de S,, sa classe dans A est le monome
ckreB2 | ou p; représente le nombre d’orbites de o a i ¢lements. En effet,
si o est un cycle d’ordre n, il est conjugué a la permutation 6,6, .. 6,_;
et sa classe dans A est ¢,. Si o est formé de cycles d’ordres g;, ¢ est
conjugué a une permutation T,T,.. ou les T; sont des cycles d’ordres g;
et sa classe est le produit des classes c,,.

Il en résulte que la classe de o dans Z[c] est égale a ¢™, m étant le
nombre d’orbites de o. Et le produit scalaire <o, t> de deux permutations
de &S, est égal a ¢™, m étant le nombre d’orbites de ot. Soit A le déter-
minant de ce produit scalaire calculé¢ dans la base &, de Z[S,]. On a

A= R U,

le produit portant sur toutes les permutations de S, et la somme sur toutes
les bijections de &, dans lui-méme. Le symbole [ f] désigne la signature de f
et m(t) désigne le nombre d’orbites de 7.

Comme m(t) est majoré par n, quelle que soit la permutation 1, le degré
de A est majoré par nn!. D’autre part, le coefficient de ¢™ dans A est
la somme des nombres [f], f parcourant I'ensemble des bijections de S,
dans lui-méme telles que of(c) ait n orbites quel que soit o, cest-a-dire
telles que o f(o) soit I'identité quel que soit o. Cet ensemble de bijections
est donc réduit a un élément et le coefficient de c""! dans A est non nul.
Il en résulte que A est non nul. Or A est la classe du déterminant de
la forme bilinéaire symétrique < , > dans le quotient Z[c¢] de A. On
en déduit que le produit scalaire < , > est non dégénéré dans K.
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Soit L une semi-tresse a n brins. Pour toute tresse ¢ de B, on peut
refermer la semi-tresse Lo et 'on obtient un entrelacs orienté E_.. On
notera F(o) le polynome de Jones-Conway de E,.

LeEMME 6-4. L’application F sétend en une application linéaire, toujours
notée F, de lalgebre H, dans l'anneau A.

Démonstration. On étend linéairement F a 1’algébre de groupe k[B,].
Soient o et t deux tresses et i < n un entier. D’aprés les propriétés du
polyndme de Jones-Conway, on a

F(co?t) — aF(co;t) + BF(ot) = 0

et I se factorise a travers l’algebre H,,.
Comme le produit scalaire < , > est non dégénéré sur K, il existe un
unique ¢lément U de I'algébre H, ® K tel que
Yue H,, cFu) = <U,u>

et U ne dépend que de la classe d’isotopie de la semi-tresse L; U sera
note p(L).

i1) Propriétés de p.

LEMME 6-5. Si L est une tresse T, p(t) est égal a la classe de <t
dans H '

n-

Démonstration. Soit o une tresse. En refermant la tresse to on obtient
Pentrelacs E;. On en deduit que la classe &(tc) dans A4 est égale 4 cPy_ et
I'on a

cF(o) = <1,0> .
Comme ceci a lieu pour toute tresse ¢ et donc pour tout élément de

H,, p(1) est égal a la classe de t dans H,,.

LEMME 6-6. Si L est une semi-tresse a n brins et o une tresse de
B,, ona

p(Lo) = p(L)p(o) .

Démonstration. Soit t une tresse de B,. Le produit scalaire < p(Lc), T>
est égal au produit de ¢ par le polyndme de Jones-Conway de I’entrelacs
obtenu en fermant Lot. Il en résulte que <p(Lo), T> est égal a <p(L), ot>
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cest-a-dire 4 <p(L)o, t>. Comme ceci a lieu pour toute tresse T, p(Lo)
est égal a p(L)p(o).

LEMME 6-7. Soient L,,L_ et L, trois semi-tresses obtenues par
modification d’une semi-tresse prés d’un croisement. Le croisement étant de signe
positif pour L, et négatif pour L_ et ayant disparu dans L. Alors on a

p(L+) + Bp(L-) — ap(Lo) = 0.

Démonstration. Soit o une tresse. Alors les trois entrelacs obtenus en
fermant L, o, L_o et L,o sont obtenus d’un entrelacs par modifications au
voisinage d’un croisement. D’aprés les propriétés du polyndome de Jones-
Conway, on a

<p(Li), o> + P<p(L_), o> — a<p(ly), o> =0
et Pon en déduit la formule cherchée.

iii) Unicité de p.

Soit L une semi-tresse représentée par une projection réguliere sur une
bande [0, 1] x R du plan. Notons C,, C,, ..., C, les composantes connexes
de L qui partent de la partie supérieure de la bande en les numérotant
de fagon que les points supérieurs des composantes soient placés de la gauche
vers la droite. On notera E lentrelacs formé des composantes fermées de L.
On dira que L est ascendante si E est en dessous de chaque C; et si,
en parcourant C,; puis C, et ainsi de suite jusqu’a C,, chaque fois que
I'on croise une portion de courbe déja vue, on la croise par dessus. Il
est clair que si L est ascendante, 'union des C; est dénouée et L est
isotope a la somme disjointe d’une tresse et d’un entrelacs. Si L est une

semi-tresse 1l suffit de modifier les positions dessus-dessous de certains
croisements et I'on obtient une semi-tresse ascendante.

LEMME 6-8. Pour toute semi-tresse L a n brins, p(L) appartient a
H, ® A.

~

LEMME 6-9. Soit p" wune application de B, dans H,® A qui
vérifie les propriétés du théoréme 6-1. Alors pour toute semi-tresse L, p'(L)
est égal a p(L).

LEMME 6-10. Soient L et L' deux semi-tresses a n brins. Alors on a

p(LL) = p(L)p(L) .
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Démonstrations. Ces lemmes vont étre démontrés par récurrence sur le
nombre de croisements de L. Supposons donc que les lemmes sont vérifiés
pour toute semi-tresse ayant au plus m — 1 croisements. Soit L une semi-
tresse ayant m croisements. Si 'on modifie un croisement de L (par modifi-
cation dessus-dessous) on obtient une nouvelle semi-tresse L,. Soit L, la
semi-tresse obtenue en supprimant le croisement. D’apres le lemme 6-7, on a

p(L) + Bp(L;) = ap(Lo) ou  Bp(L) + p(Ly) = ap(Lo)

suivant le signe du croisement considéré. Comme L, a m — 1 croisements,
p(Lo) appartient a H, ® A, p'(L,) est égal a p(L,) et p(L,L’) est ¢gal a
p(Lo)p(L). On en déduit que p(L) appartient a H, ® A si et seulement si
p(L,) appartient 2 H, ® A, que p’ et p sont égaux en L si et seulement si
ils sont égaux en L, et que p(LL') est égal a p(L)p(L’) si et seulement si
p(Ly L) est egal a p(Ly)p(L).

Pour montrer les propriétés cherchées on peut supposer, quitte 2 modifier
les croisements non ascendants de L, que L est ascendant. La semi-tresse L
est alors isotope a l'union disjointe d’une tresse T et d’un entrelacs E.

Soit o une tresse. L’entrelacs obtenu en fermant Lo est 'union disjointe
de E et de I'entrelacs obtenu en fermant t. On a donc

<p(L),c> = <1,0> cPy

ce qui implique que p(L) est égal a p(t)cPp et par suite appartient a
H, ® A.

D’autre part, pour tout entrelacs orienté E’, on peut considérer 'image par
p' de T'union disjointe de t et de E. On construit ainsi un invariant
polynomial d’entrelacs qui vérifie les propriétés du polynome de Jones-
Conway, sauf la propriété de valoir 1 sur 'entrelacs trivial. D’aprés I'unicité
du polynéme de Jones-Conway, on a

pP(tUE) = p(t)cPp .

Comme il en est de méme pour p, p et p' prennent la méme valeur en L.
Enfin, on remarque que LL’ est isotope a I'union disjointe de € et de
tL’. On a donc pour toute tresse G

<p(LL), o> = <p(L), ot> cPg,
ce qui implique

p(LL") = p(t)p(L)cPg .
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Comme ceci a lieu quel que soit L', on a

p(L) = p(t)cPg

et 'on a

p(LL) = p(L)p(L)) -

Les lemmes sont alors démontrés, ce qui prouve que p est une représen-
tation de En dans H, ® A qui prolonge la représentation canonique de B,
dans H,, qu'elle vérifie la formule voulue sur les semi-tresses L., L_ et Ly,
et que Cest la seule représentation vérifiant ces proprietés.
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