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PROBLEME DE GAUSS 45

LEMME 2. Il n’y a quun nombre fini de triplets de nombres entiers
(a, b, c) tels que b*> —4ac = —d et |b|<a<c

Démontrons le lemme 1. Soit ax? + bxy + cy* une forme quadratique
appartenant a la classe C considérée. Par hypothese cette forme est positive,
de sorte que a > 0 et ¢ > 0. Les changements de variables (x, y) > (x—¢€y, y)
et (x,y)— (x, y—ex), ou ¢ est le signe de b, ont pour effet de remplacer
(a, b, ¢) par (a, b—2¢a, a+c— b)) et par (a+c—|b|, b—2ec, c). Si donc|b| > a
ou |b| > ¢, on peut remplacer ax® + bxy + cy> par une forme équivalente
pour laquelle la quantité a + c¢ est strictement plus petite. Aprés un nombre
fini de substitutions de ce type, on trouve une forme ax* + bxy + cy”
dans C pour laquelle |b| < a et |b]| < c Cette forme, ou la forme
ex? — bxy + ay? qui sen déduit par le changement de variables (x, y)
— (y, —x), remplit les conditions du lemme 1.

Démontrons le lemme 2. Si (a, b, ¢) sont comme dans Iénoncé de ce
lemme, on a

(3) d = 4ac — b* > 4a? — a* = 3a*,

de sorte que a ne peut prendre quun nombre fini de valeurs; il en est
alors de méme de b et de ¢, puisque | b| < a et ¢ = (b*+d)/4a.

§2. FORMES QUADRATIQUES REDUITES 1)

Dans ce paragraphe, nous montrons comment la théorie de la réduction
de Gauss permet de sélectionner un représentant dans chaque classe C
de formes quadratiques de discriminant —d.

Nous savons déja que C contient une forme quadratique ax® + bxy + cy?
telle que |b| < a < ¢ (lemme 1 du §1). Peut-il y avoir plusieurs formes
de ce type dans C? En fait, la seule autre possible est ax® — bxy + cy?,
lorsquelle est dans C. Ceci vient du fait que | b| est déterminé par a
et ¢ (on a b*—4ac=—d), et que a, ¢ sont caractérisés par le fait que
pour toute forme quadratique g € C, on a

(4) a = inf (g(u)) (u#0 dans Z?);
(5) ac = inf (g(u)g(v))  (u, v non colinéaires dans Z?) .

Il nous suffit en effet de vérifier (4) et (5) pour une seule forme
quadratique g € C, par exemple la forme ax? + bxy + cy? elle-méme. Mais

Y C.-F. Gauss, Disquisitiones Arithmeticae, n® 171 et 172.
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pour celle-ci, on a q(1,0) = a, q(0,1) = c et g(x,y) = ax* — | b || xy| + cy*
> 2a—|b)) | xy | + (c—a)y?*, d’ou

q(xao)>a> si x;éo
©6) g0,y > c, si y#0
qx,y) = Qa—|b)) + (c—a) =a+c—|bl=c st xy#0,

et donc les égalités (4) et (5).
Voyons maintenant dans quels cas la forme ax® — bxy + cy? appartient
a la classe C:

LEMME. Pour que laforme q¢(x,y) = ax* + bxy + cy* (avec |b|<a<c)
soit équivalente a la forme ¢'(x,y) = ax* — bxy + cy?, il faut et il suffit
que lon ait a =|b|,a=c ou b = 0.

On a g(x,y) = g(xty,y) st a= tb, gx,) = ¢y, —x) si a =g,
q(x, y) = q'(x,y) si b = 0. Supposons 0 < | b| < a < c. S’1l existe ( >
€ SL,(Z) tel que q'(x, y) = g(oax+ By, yx+0y), on a q(a, y) = a et g(B, d) = ¢,
d’ou vy = 0 puis B = 0 en appliquant (6), et finalement (:’L E) = + 1, ce

qui est absurde.
L’étude qui précéde nous conduit a adopter la définition suivante:
une forme quadratique ax® + bxy + cy? est dite réduite si 'on a

b <a<c
b>0 s1 aestégala|b|ouac.

Nous avons alors prouvé le théoréme suivant:

THEOREME. Chaque classe de formes quadratiques de discriminant —d
contient une unique forme réduite.

La démonstration du lemme 1 du §1 fournit en fait un algorithme
permettant d’obtenir la forme quadratique réduite équivalente a une forme
donnée.

Exemple. Appliqué a la forme quadratique 9x* + 43xy + 53y? (repré-
sentée par (9, 43, 53) pour abréger), cet algorithme s’écrit

(97 43, 53) ~ (9> 253 19) ~ (99 7) 3) ~ (57 17 3) ~ (39 _13 5)

et 3x2 — xy + 5y? est la forme réduite cherchée.
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