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44 J. OESTERLE

L’exposé est divisé en deux parties:

Les resultats exposés dans la premiére partie sont dus pour I’essentiel
a Gauss !). On y montre pour commencer quil n’y a quun nombre fini
de classes de formes quadratiques de discriminant A < 0 donné (§1). On
donne un algorithme simple permettant d’obtenir un systéme de représentants
de ces classes, et de calculer le nombre }T(A) de telles classes (§2 et §3).
Une des découvertes fondamentales de Gauss est I’existence d’une structure
de groupe abélien naturelle sur l'ensemble CI(A) des classes de formes
quadratiques primitives de discriminant A (primitives signifie telles que
pged(a, b, ¢) = 1): cette structure de groupe est décrite au § 4; le lien avec
Iarithmétique des corps quadratiques imaginaires est exposé aux §4 et § 5.

En dressant une table des nombres de classes, Gauss constate expéri-
mentalement que ces nombres semblent tendre vers + oo lorsque le discri-
minant tend vers — oo (en satisfaisant a (2)). Il faudra attendre plus de cent ans,
avec les travaux de Heilbronn en 1934, pour voir cette assertion démontrée.
Se pose alors la question de dresser, pour les petites valeurs de h entier
> 1, la liste complete des A < 0 tels que E(A) = h. Cest essentiellement
I’histoire (sans démonstrations) des progres récents obtenus sur cette question
qui fait Pobjet de la seconde partie de Pexpose. Nous expliquerons le role
joué par les courbes elliptiques dans ces progres.

I. LA CLASSIFICATION DE (GAUSS DES FORMES QUADRATIQUES

§ 1. FINITUDE DU NOMBRE DE CLASSES ?)

THEOREME. Soit d wun entier > 1. Il n’y a quun nombre fini de
classes de formes quadratiques de discriminant —d.

Ce théoreme résulte des deux lemmes suivants:

LEMME 1. Toute classe contient une forme quadratique ax* + bxy + cy?
telle que |b| < a < c

1)y C.-F. Gauss, Disquisitiones Arithmeticae, 1801 (Werke, t. I), Section cinquiéme.
(Traduction frang:alse par A.-C.-M. POULLET DELISLE parue en 1807.) Dans cet
ouvrage, Gauss suppose les formes ax® + bxy + cy?* paires, cest- a-dlre telles que b
soit palr Le cas general s’y raméne facilement, en remplagant ax® + bxy + cy?
par 2ax? + 2bxy + 2cy? lorsque b est impair.

%) C.-F. GAuss, Disquisitiones Arithmeticae, n° 174.
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LEMME 2. Il n’y a quun nombre fini de triplets de nombres entiers
(a, b, c) tels que b*> —4ac = —d et |b|<a<c

Démontrons le lemme 1. Soit ax? + bxy + cy* une forme quadratique
appartenant a la classe C considérée. Par hypothese cette forme est positive,
de sorte que a > 0 et ¢ > 0. Les changements de variables (x, y) > (x—¢€y, y)
et (x,y)— (x, y—ex), ou ¢ est le signe de b, ont pour effet de remplacer
(a, b, ¢) par (a, b—2¢a, a+c— b)) et par (a+c—|b|, b—2ec, c). Si donc|b| > a
ou |b| > ¢, on peut remplacer ax® + bxy + cy> par une forme équivalente
pour laquelle la quantité a + c¢ est strictement plus petite. Aprés un nombre
fini de substitutions de ce type, on trouve une forme ax* + bxy + cy”
dans C pour laquelle |b| < a et |b]| < c Cette forme, ou la forme
ex? — bxy + ay? qui sen déduit par le changement de variables (x, y)
— (y, —x), remplit les conditions du lemme 1.

Démontrons le lemme 2. Si (a, b, ¢) sont comme dans Iénoncé de ce
lemme, on a

(3) d = 4ac — b* > 4a? — a* = 3a*,

de sorte que a ne peut prendre quun nombre fini de valeurs; il en est
alors de méme de b et de ¢, puisque | b| < a et ¢ = (b*+d)/4a.

§2. FORMES QUADRATIQUES REDUITES 1)

Dans ce paragraphe, nous montrons comment la théorie de la réduction
de Gauss permet de sélectionner un représentant dans chaque classe C
de formes quadratiques de discriminant —d.

Nous savons déja que C contient une forme quadratique ax® + bxy + cy?
telle que |b| < a < ¢ (lemme 1 du §1). Peut-il y avoir plusieurs formes
de ce type dans C? En fait, la seule autre possible est ax® — bxy + cy?,
lorsquelle est dans C. Ceci vient du fait que | b| est déterminé par a
et ¢ (on a b*—4ac=—d), et que a, ¢ sont caractérisés par le fait que
pour toute forme quadratique g € C, on a

(4) a = inf (g(u)) (u#0 dans Z?);
(5) ac = inf (g(u)g(v))  (u, v non colinéaires dans Z?) .

Il nous suffit en effet de vérifier (4) et (5) pour une seule forme
quadratique g € C, par exemple la forme ax? + bxy + cy? elle-méme. Mais

Y C.-F. Gauss, Disquisitiones Arithmeticae, n® 171 et 172.
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