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We can identify the irreducible faithful Q[Z/p]-Module Qpl with Q(ÇP)

(Çp: primitive p-th root of unity, leZ/p acts on Q(ÇP) by multiplication

with Çp). Any symmetric a-invariant bilinear form is given by

trQ(cP)/Q(axy with Kp+^P"1) (cf- M or M)- We write ya for the

a-invariant bilinear form corresponding to a e Q(Çp + Ç^1).

(1.2) Lemma. 77ze discriminant of ja in Q/Q*2 is egwa/ to p mod Q*2.

Proof Since aeL: QK^ + Ç;1) we have: trL/Q(trQ(Cp)/Laxy). An

easy computation shows that trQ{t-p)/L(axy) is a 2-dimensional symmetric
L-bilinearform with discriminant 4 — (Çp + Çp x)2 mod L*2 e L/L*2. Applying
[7, Lemma 2.2] we conclude that the discriminant of ya is indépendant of
a g L. Consider now the matrix representation of a given before (a : irreducible
faithful Q-representation of Z/p). Let C be the (p— 1) x (p— l)-matrix
given by:

C :

" 2

-1
-1

2 -1
-1 2

1

It is easy to check that C is the matrix of a a-invariant symmetric
bilinear form. The Lemma follows since the determinant of C is equal to p.

2. Orthogonal representations of p-groups

Let p > 2 be an odd prime. The integer lQ(p) is defined by

the m-fold direct sum a ® © a of the irre-
Iq(p) '• g-c.d. m > 1 ducible faithful Q-representation a of Z/p is

equivalent to an orthogonal representation

The importance played by cyclic groups in the investigation of representations
of p-groups is given by the following result (cf. [1, Theorem (1.10)]):

(2.1) Proposition. Let G be a finite p-group (p> 2) and let p be an
irreducible Q-representation of G. Then either p is induced from a
representation 0 of a normal subgroup of index p9 or p factors through a
Q-representation of Z/p.
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The degree of an irreducible non trivial Q-representation of a finite

p-group is therefore of the form pk(p— 1) (k 0, 1, 2,...), cf. [1, Corollary (1.11)].

(2.2) Proposition. Let G be a p-group (p>2) and p:G-+S02m(Q) a

representation of G with 2m # 0 mod (/Q(p) • (p— 1)). Then p has a fixed
point (i.e. p 1 © x where 1 is the unique 1-dimensional Q-representation

of G).

We will need the following lemma for the proof of (2.2):

(2.3) Lemma. Let p : G -> GLm(Q) be an irreducible non trivial representation

of the p-group G(p> 2) and let v[f be a p-invariant symmetric
bilinear form. If we write a for the irreducible faithful representation of
Z/p, then there exist a-invariant bilinear forms r\,..., Ts such that \|/

is equivalent to the orthogonal sum JL _L Ts.

Proof. Let pk(p — 1) be the degree of p. We prove the lemma by induction
on k. For k 0, p factors through the irreducible faithful representation a of
Z/p. Every p-invariant symmetric bilinearform v|/ is therefore a-invariant.
For k > 0, p is induced by a representation 0 of a normal subgroup H
of index p. The restriction pH of p to H splits in a direct sum :

p 0i ® ® 0P with 0 0! and 0f is irreducible for i 1,..., p. By (1.1)

we can assume that Qm is the orthogonal sum of the corresponding
irreducible invariant subspaces. The assertion follows by induction.

Proof of (2.2). If G Z/p, we split p in a direct sum: p n01 ©
(1 : one dimensional representation of Z/p; a: irreducible faithful representation

of Z/p). If n0 — 0 then n1 must be a multiple of ZQ(p), i.e. we have

2m 0 mod(p—1)/Q(p). Contradiction.

If G is not Z/p, we split p in a direct sum of irreducible representations :

p px 0 ® ptJ chosen in such a way that Q2m is the orthogonal sum

of the corresponding invariant subspaces. Suppose now that p has no fixed

points. Then all pf are non trivial and it follows from (2.3) that any
p-invariant symmetric bilinear form is equivalent to an orthogonal sum of
a-invariant symmetric bilinear forms. We can therefore construct a

representation Z/p -> S02m(Q) without fixed points, what contradicts the first

part of the proof.
The rest of the section is devoted to the computation of ZQ(p), p odd prime.

4 otherwise.

2 if p ¥= 1 mod 8
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Proof. For each a e Q(ÇP + Ç f1), the discriminant of ya is not a square
in Q (cf. lemma (1.2)). Therefore lQ(p) must be even. The 4-fold orthogonal sum

of a Q-bilinear form is equivalent to the standard bilinear form, since every

integer is sum of four squares. Let C be the matrix considered in the proof
of lemma (1.2). If it is possible to find two rational numbers u and v

such that the matrix Xu fJ

XutV:
uC 0

0 vC

represents a bilinear form ^UtV which is equivalent to the standard one,
then the representation a © a is equivalent to an orthogonal representation.
This sufficient condition is also necessary if p 3 mod 4 (cf. [5]). For a

prime p9 let Qp be the field of p-adic numbers and write Qœ for R as

usual. For a, b g Q and for v 2, 3, 5, 7,..., oo we write (a, b)v for the Hilbert
symbol of a and b relatively to Qv. For a bilinearform a given in an
orthogonal base by the diagonal matrix

~&i

we write Hv(a) (v 2, 3,..., oo) for the Hasse invariant, which is defined by

Hv(&) I I ©')v
i<j

Using the formulas given for example by [9] to compute the Hilbert symbol,
one check that :

HMi, i) 1 if P # 3 mod 4 for v 2, 3, 5, 7,..., oo

H2(^11, v) — 1 if p 7 mod 8 for any u and any v

Hv(&2p, 1) 1 if P ~ 1 mod 8 for v 2, 3, 5, 7,... 00

Since the discriminant of $UtV is 1 g Q/Q*2 and since is positive définit
for any u and any v, it follows that cr © g is equivalent to an orthogonal
representation if and only if p ^ 7 mod 8. It remains to show that, for
p 1 mod 8, the 2«-fold orthogonal sum p given by the matrix H:
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H:

U\C

u2nC_

is isomorphic to the standard bilinear form if and only if n is even. Let
uodd and weven defined by :

n n

Ueven ' 0 U2k Uodd'- Y1 U2k~ll
k=1 k=1

an easy computation shows that #y(£>Meven,Uodd) Hv(\x) if n is odd. The

proposition follows.

3. Proof of the main theorem

(3.1) Lemma. Let p be a prime number (p> 2). For every integer m

satisfying 2m ^ 0 mod (p —1) • lQ(p) we have FQ(m, p) 1.

Proof Let G be a p-group, p > 2. It follows from (2.2) that any
representation p of G splits: p 1 © x (1 is the 1-dimensional representation
of G). Then we have £(p) e(l)e{x) 0.

We are now able to prove the main theorem. It has been showed in [3]
that FQ(n) 4 if n is odd. If n is even, four cases have to be distinguished.
If p 2 then the n/2N~2-îo\d sum of the irreducible faithful representation of
Z/2N, where 2N is the 2-primary part of den (BJri), is an orthogonal
representation with Euler class of order 2N (cf. [1]). Let now p be an odd

prime. Since the irreducible faithful representation v of Z/pr(r^l) is induced

by the irreducible faithful representation of Z/p a Z/pr, the M-fold sum of v
is equivalent to an orthogonal representation if and only if lQ(p) divides

M. Write n Npk(p— 1) with g.c.d. (N,p) 1. If N is even, the 2N-fold
sum of the irreducible faithful representation of Z/pk+1 is orthogonal and has

Euler class of order pk + 1 (cf. [1]); if N is odd and p ^ 7 mod 8 then the

2,/V-fold sum of the irreducible faithful representation of Z/pk + 1 is orthogonal
and has Euler class of order pk + 1 (cf. [1]). In the three cases, the statement
follows from the well known characterization of den (BJri) (cf. [1] for
example). Eventually, applying (3.1) we see that FQ(n, p) 1 if N is odd and

p 7 mod 8.
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