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Comme X, est ¢videmment une surface K-rationnelle, la k-variété
X, = Ryu(Xg) est k-rationnelle, si bien que Pon a paramétré les points du
noyau de f. Pour paramétrer les points de X(k) d’image non triviale par f,
Chatelet observe par un calcul fort instructif que pour tout o = f(Po),
les points M de f~ (o) = X(k) sont obtenus a partir des points de ¢ (X (k)
en appliquant la « symétrie » par rapport au point Py .

3.3. APRES CHATELET.

Les travaux consécutifs a ceux de Chitelet se sont en général places
dans la perspective plus large de I'étude des surfaces rationnelles et aussi
de certaines variétés rationnelles de dimension plus grande. Comme ces
travaux ont fait récemment 'objet d’exposés généraux (Manin/Tsfasman 1986,
Pauteur 1986), on se contentera ici de décrire les développements ayant trait
directement aux recherches de Chatelet.

Manin et Iskovskih, généralisant des résultats d’Enriques (1897) ont établi
une classification k-birationnelle des surfaces rationnelles. Dans cette classifi-
cation, les surfaces de Chatelet généralisces:

y? — az? = P(x), degP <4

apparaissent comme les surfaces arithmétiquement non-triviales les plus
simples. Elles ont servi de banc d’essai pour toutes les conjectures concernant
les variétés rationnelles, conjectures dont on a quelques raisons d’espérer
quelles s’inserent dans un ensemble bien plus vaste, sortant du cadre des
varietés rationnelles.

Pour la commodité de I'exposé, disons que I'on s’est intéressé aux trois
themes suivants:

k-rationalité. Si X est une surface (variéte) rationnelle avec un k-point
non singulier, qu’est-ce qui empeéche X d’€tre k-rationnelle, ou du moins
k-stablement rationnelle (X x P} k-birationnel a P3), et y a-t-il une différence
entre ces deux notions (probleme de Zariski, mentionné par B. Segre en
1950)?

Principe de Hasse. Si k est un corps de nombres, décrire obstruction a
la validité du principe de Hasse.

Description des points rationnels. Si k est un corps de nombres, et
X(k) # (O, obtenir des parametrisations finies du type de Chitelet pour
d’autres classes de variétés. A defaut, décrire des relations d’équivalence sur
X(k) approchant la décomposition en classes de paramétrisation.



400 J.-L. COLLIOT-THELENE

Manin et Voskresenskii dégagérent le role important du module galoisien
Pic (X) (X variété rationnelle projective et lisse) dans I'étude de la k-rationalité
(stable). Ainsi, au moins en caractéristique zéro, le groupe H(G, Pic(X))
est un invariant k-birationnel qui est essentiellement équivalent a un autre
invariant, le groupe de Brauer-Grothendieck de X. Ces invariants permettent
souvent de reconnaitre quune k-variété rationnelle n’est pas k-rationnelle,
ce bien quelle posséde un point rationnel.

Swinnerton-Dyer donna deés 1962 des contre-exemples au principe de
Hasse pour les surfaces cubiques lisses, et d’autres suivirent pour d’autres
types de surfaces rationnelles. Manin (1970) mit de I'ordre dans ces contre-
exemples, en les interprétant au moyen du groupe de Brauer-Grothendieck.

Dans son livre sur les formes cubiques (1970), Manin donne aussi son
point de vue sur la paramétrisation des points rationnels des surfaces de
Chatelet. Il introduit d’'une part la notion de R-équivalence sur les points
(€tre liés par une chaine de courbes de genre zéro), d’autre part ’équivalence
de Brauer, via laccouplement naturel X(k) x BrX — Brk. Il se trouve
que pour les surfaces de Chatelet ces deux notions coincident, mais il n’en
est plus ainsi pour les surfaces de Chatelet généralisées.

En 1970, je passai une année a Cambridge (Angleterre) et P. Swinnerton-
Dyer me suggera de comprendre en profondeur les calculs assez mystérieux
de Chatelet, ce afin de généraliser les résultats a d’autres variétés. En 1974,
je pus ainsi interpréter une partie des calculs de Chatelet grace a lutili-
sation de torseurs sous des tores particuliers (ainsi le calcul fort instructif
mentionne a la fin de 3.2 peut étre interprété au moyen d’une généralisation
de la loi de réciprocite d’A. Weil).

En 1976, Sansuc et moi-mé€me, inspirés par les articles de Chatelet de
1954 et 1959 d’une part et par les travaux de Manin et Voskresenskii
d’autre part, établimes pour les points rationnels des tores algébriques
I’analogue du résultat de paramétrisation finie de Chatelet. Ce résultat peut
s'interpréter dans la perspective de la « descente » sur les points rationnels
d’une variété rationnelle X. Comme Chatelet, on utilise des torseurs sur X
sous des tores, plutét que le groupe de Brauer-Grothendieck (de tels torseurs
donnent une meilleure approximation de la R-equivalence sur X(k)). En 1984, -
Sansuc, Swinnerton-Dyer et moi-méme plimes compléter le programme de la
descente pour toutes les surfaces de Chatelet généralisées. Ainsi, si une telle
surface X posséde un k-point et si Pinvariant Pic(X) est « trivial », alors X
est stablement k-rationnelle. Comme d’autres invariants, non stables, per-
mettent parfois de montrer que X n’est pas k-rationnelle, ceci mena a une
réponse négative au probleme de Zariski, tant pour les surfaces sur Q
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(exemple: y?+3z2=x>—2) que pour les variétés de dimension 3 sur C
(résultat obtenu en collaboration avec Beauville). Par ailleurs, ’obstruction de
Manin au principe de Hasse (donnée par le groupe de Brauer-Grothendieck)
est ici la seule, et ceci permet de déterminer effectivement si une telle surface a
un point rationnel. Enfin, les points rationnels d’une telle surface peuvent
étre décrits au moyen d’un nombre fini de paramétrisations par des varietés
k-rationnelles.

Dans ses recherches, Francois Chitelet ne s’est jamais enlis¢ dans un
formalisme gratuit. Les idées qu’il a lancées sont encore fécondes aujourd’hui,
et "aimerais en conclusion redire combien elles m’ont marque.
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