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L'Enseignement Mathématique, t. 34 (1988), p. 387-405

LES GRANDS THÈMES DE FRANÇOIS CHÂTELET x)

par Jean-Louis Colliot-Thélène

Les travaux mathématiques de F. Châtelet ont porté principalement sur
la géométrie diophantienne, et il a contribué de façon significative et très

originale à l'arithmétique de trois classes de variétés algébriques : les variétés

de Severi-Brauer, les courbes de genre 1 et les surfaces cubiques. Il s'est

aussi intéressé aux points exceptionnels (points de torsion) sur les courbes

elliptiques, ainsi qu'aux quadriques et hyperquadriques.
Pour rendre compte de ces travaux, j'utiliserai quelques notations usuelles

en géométrie algébrique. Etant donnée X/k une variété algébrique définie

sur un corps k (i.e. définie par un système d'équations à coefficients
dans k) on note X(k) l'ensemble des points /c-rationnels de X (solutions à

coefficients dans k). Si L est un surcorps de k, on note XL la variété X
considérée sur L et X(L) les points L-rationnels de X. Etant donnée k

une clôture séparable de k, on note X X~k. On note P£ l'espace projectif
de dimension n sur le corps k.

1. Variétés de Severi-Brauer

1.1. Avant Châtelet.

Les variétés de Severi-Brauer sont des généralisations en dimension
supérieure des coniques. Voici quelques propriétés bien connues des coniques.
Une conique C c Pfc2 qui possède un point rationnel est /c-isomorphe à

(Diophante; c'est la paramétrisation par les droites passant par un point).
Si une conique possède un point rationnel dans une extension de degré
impair de k, elle possède un point /c-rationnel. Si k est un corps fini,
toute conique possède un point rationnel. Si k est le corps R des réels,

l) François Châtelet, professeur à l'Université de Besançon depuis 1949 est décédé
le 19 avril 1987 dans sa 75e année. Il faisait partie de la rédaction de L'Enseignement
Mathématique depuis 1960. Le présent exposé a été fait à Besançon, le 28
septembre 1987, lors de la réunion à la mémoire de F. Châtelet.
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toute conique est R-isomorphe soit à Pr soit à x2 + y2 + z2 0. Si

k est le corps Q des rationnels, les conditions de congruence (et la condition
réelle) suffisent à assurer l'existence d'un point Q-rationnel (Legendre). Plus

généralement, si k est un corps de nombres, la condition C(kv) A 0
pour chaque complété kv de k en une place v assure C(k) ^ 0 (principe
de Hasse).

Comme toute courbe (projective et lisse) définie sur k et de genre 0,

c'est-à-dire isomorphe, sur k, à P^ est /c-isomorphe à une conique (Max
Noether 1884, Hilbert/Hurwitz 1884, Poincaré 1901), toute telle courbe C

satisfait les propriétés ci-dessus. En outre, il existe une extension au plus

quadratique K de k telle que C(K) soit non vide. Notons enfin la propriété,
qu'on peut attribuer à Hasse (1924): si deux courbes de genre zéro C

et D définies sur un corps de nombres k sont isomorphes sur tous les

complétés kv de /c, elles sont isomorphes sur k.

D'un point de vue géométrique, les courbes mentionnées ci-dessus

admettent deux extensions naturelles en dimension plus grande que 1 : les

quadriques et les variétés de Severi-Brauer. Pour les quadriques, l'analogue
de la plupart des propriétés ci-dessus, et tout spécialement le principe de

Hasse, furent établis par Hasse dans ses mémoires sur les formes quadratiques
(1923/1924).

Définition. Une variété X de dimension à définie sur le corps k est dite
de Severi-Brauer si X est isomorphe à P^ (isomorphe sans exceptions).

C'est dans la thèse de François Châtelet que furent développées
systématiquement les propriétés de ces variétés. Néanmoins, comme le note
B. Segre en 1949, cette notion apparaît pour la première fois chez Severi

(1932) qui donne une démonstration géométrique du théorème: si X(k)
est non vide, alors X est /c-isomorphe à Pk. Par ailleurs, dans le cas

d 1, Witt (1934) et Hasse (1935) notent la correspondance entre coniques
et algèbres de quaternions. Les algèbres de quaternions (Hamilton, Frobenius)
sont un cas spécial des algèbres centrales simples (Dickson, Wedderburn, 1905),

qui sont les /c-algèbres A telles qu'il existe un isomorphisme de /c-algèbres

A ®kk ~ Mn(k) (Mn(k) est l'algèbre des matrices (n, n) sur le corps k). Les

propriétés des algèbres centrales simples (« systèmes hypercomplexes ») furent

dégagées par Brauer, Hasse, E. Noether et Albert entre 1927 et 1934, et

Deuring leur consacra son livre Algebren en 1935.

Rappelons ici les propriétés principales. Une /c-algèbre simple centrale

A est /c-isomorphe à une /c-algèbre Mr(D) où D est un corps gauche de

centre /c, le degré [D : /c] étant un carré i2. On appelle i l'index de A. Pour
k R, les seuls corps gauches de dimension finie sur leur centre R sont R



LES GRANDS THÈMES DE FRANÇOIS CHÂTELET 389

lui-même et H l'algèbre des quaternions de Hamilton (Frobenius). Si k est

un corps fini, toute algèbre simple centrale sur k est de la forme Mr(k)
(Wedderburn). Enfin, si k est un corps de nombres, et si A 0fc kv ~ Mn(kv)

pour toute place v de k, alors A ~ Mn(k) comme /c-algèbre (Brauer/Hasse/
Noether, Albert). Par ailleurs, Skolem et Noether identifièrent le groupe des

automorphismes d'une /c-algèbre simple centrale A au quotient A*//c* (le

groupe des unités A* agissant par conjugaison intérieure). De son côté,
Brauer organisa les classes d'algèbres simples centrales sur k en un groupe,
dit depuis groupe de Brauer de k, via le produit tensoriel des algèbres,
les algèbres «déployées» Mn(k) étant considérées comme triviales. Ceci
l'amena à introduire les «systèmes de facteurs», qui sont l'un des ancêtres
de la cohomologie des groupes.

1.2. La contribution de F. Châtelet [1943a] [1943b] [1944].

Dans sa thèse [1944], François Châtelet généralisa aux variétés de

Severi-Brauer tous les résultats connus pour les coniques :

Théorème. Soient X et Y deux variétés de Severi-Brauer de dimension

d sur le corps k.

1) Si X(k) est non vide, alors X est k-isomorphe à PjJ.

2) Il existe un corps K contenant k et de degré [K:k~] divisant
(d+1) tel que X(K) soit non vide.

3) Si L est une extension finie de k, X(L) non vide et [L:k] premier
à (d+1), alors X possède un k-point rationnel.

4) Si k est fini, X est k-isomorphe à Pk.

5) Si k est un corps de nombres, et Xkv ~ Ykv pour toute place v
de k, alors X est k-isomorphe à Y.

En particulier, si X(kv) est non vide pour chaque place v de k, alors X
possède un /c-point rationnel.

Quelle est la méthode de Châtelet? Pour reprendre le langage de sa
thèse, il considère une extension galoisienne finie K/k de groupe G et une
variété de (Severi-)Brauer de dimension d « admettant K comme corps de
représentation» (les groupes profinis n'avaient pas encore fait leur
apparition). A une telle variété est attaché un « système de matrices associées »
(«Algèbre de Brauer de degré d+ 1 »). Enfin à une telle algèbre est attaché
un « système de scalaires associés ».
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En termes d'aujourd'hui, Châtelet s'intéresse aux classes d'isomorphismes
de /c-variétés X qui deviennent isomorphes à sur K. Un calcul depuis
bien connu (chez Châtelet, la relation caractérisant les 1-cocycles apparaît
sous le nom de « relation de compatibilité ») associe à une telle k-variété

une classe dans l'ensemble de cohomologie H1(G, Aut^(P|)), et montre que
deux telles /c-variétés X et Y sont /c-isomorphes si et seulement si elles

ont même classe de cohomologie. En fait, comme Vd est une variété

raisonnable, on sait que toute classe de cohomologie provient d'une variété
de Severi-Brauer, ce que Châtelet semble avoir vu et qui fut plus tard
démontré par Weil (1956).

Ce qui permet alors à Châtelet d'obtenir le théorème ci-dessus, c'est le

double isomorphisme :

AutK(VdK) ~ PGLd + 1(K) (tout automorphisme de l'espace projectif est

donné par une homographie)

AutK(Md + 1{K)) ~ PGLd+1(K) (Skolem-Noether).

Les « systèmes de matrices associés » ne sont autres que les 1-cocycles à

valeurs dans PGLd + 1(K); quant aux « systèmes de scalaires associés » à un tel

1-cocycle, c'est un 2-cocycle dont la classe de cohomologie dans le sous-

groupe H2(G, K*) du groupe de Brauer de k est obtenue à partir du

1-cocycle via la suite exacte G-équivariante de groupes:
1 K* GLd + 1(K) - PGLd + 1(K) - 1

Le même principe général que plus haut, et dont, rappelons-le, Châtelet
fut l'un des principaux inventeurs, dit que l'ensemble H1(G, PGLd+1(K))
classifie aussi les /c-algèbres simples centrales de degré à + 1 qui sont déployées

par passage au corps K. Châtelet obtient ainsi tous les résultats sur les

variétés de Severi-Brauer à partir des résultats connus sur les algèbres
centrales simples.

Le mémoire de 1944 contient un autre résultat, oublié jusqu'à sa remise

au goût du jour par M. Artin en 1982: F. Châtelet appelle «sous-variété
normale » Y d'une variété de Severi-Brauer X une sous-variété fermée telle

que Y c î ~ p! soit un espace linéaire (ce qui ne dépend pas de l'iso-

morphisme choisi). Définissant i(X) comme étant le plus petit des entiers r
tels qu'il existe une sous-variété normale 7 cl de dimension (r—1),
Châtelet montre que i(X) coïncide avec l'index (de la classe) d'une algèbre

simple centrale associée à X par la correspondance ci-dessus (ceci généralise
le point 1) du théorème).

Glissons ici un mot sur les articles de Châtelet consacrés à l'arithmétique
des (hyper)quadriques (1948). Châtelet y examine d'un point de vue géomé-
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trique les transformations qui permettent de passer d'une quadrique non-

singulière X de P3 à une conique de P2 définie sur l'extension discriminant

et ainsi en particulier d'obtenir le principe de Hasse pour ces quadriques.

1.3. Après les travaux de Châtelet.

En 1949, B. Segre tout en rendant hommage au travail de Châtelet

rappelle l'existence du travail de Severi (1932) qui avait échappé à l'attention
de Châtelet, et indique en particulier que Severi par ses méthodes avait

obtenu (d + l)d au point 2) du théorème ci-dessus. C'est dans cet article que

Segre transforme les « variétés de Brauer » de Châtelet en « variétés de

Severi-Brauer ». Convenons qu'il eut été plus juste de les appeler variétés

de Severi-Châtelet.

Alors que la théorie de Châtelet insiste de façon très moderne sur

l'isomorphie sans exceptions, Amitsur en 1955 refait la théorie d'un point
de vue plus birationnel (corps de décomposition « générique » d'une algèbre
centrale simple) et redémontre l'énoncé 2) du théorème ci-dessus. Il établit
le résultat intéressant suivant: si X et Y sont deux /c-variétés de Severi-

Brauer /c-birationnellement équivalentes, les classes a(X) et a(Y) qui leurs sont
associées dans le groupe de Brauer de k engendrent le même sous-groupe.
On ignore si la réciproque vaut. Le point de vue de l'ensemble de cohomologie
H1(Gsd (K/k), PGLd + 1(K)) réapparaît dans un article de Roquette (1963).

Signalons aussi un article d'Amitsur (1981).

Le point de vue moderne sur les variétés de Severi-Brauer qui a été

esquissé plus haut fut dégagé par Serre dans ses livres Corps locaux (1962)
et Cohomologie galoisienne (1965). Après l'introduction des algèbres d'Azu-
maya, qui généralisent les algèbres simples centrales, le corps de base étant
remplacé par un anneau commutatif (Azumaya 1951, Auslander/Goldman
1960), Grothendieck (1965) dans une série magistrale d'exposés sur le groupe
de Brauer d'un schéma étudie les schémas de Severi-Brauer relatifs.

1.4. Importance des variétés de Severi-Brauer.

En arithmétique, les variétés de Severi-Brauer servent de référence dans
l'étude des variétés rationnelles plus générales (une variété X est dite rationnelle

si elle devient birationnellement équivalente (mais non nécessairement
isomorphe) à l'espace projectif sur une extension finie de son corps de base.)
Pour d > 1, aucune des propriétés du théorème ci-dessus ne vaut en général,
mais on peut essayer de trouver des substituts. Nous reviendrons là-dessus
au paragraphe 3.

28
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En géométrie, i.e. dans l'étude des variétés définies sur le corps des

nombres complexes, les variétés de Severi-Brauer jouent un grand rôle

comme fibre générique de morphismes X -+ Y, dans l'étude des variétés qui
sont « proches d'être rationnelles » : variétés unirationnelles de divers types.
Ainsi, le fameux contre-exemple d'Artin/Mumford (1972) au problème de

Lüroth en dimension 3 (une variété qui est dominée par une variété
rationnelle n'est pas nécessairement rationnelle) est-il fourni par une telle

variété X fibrée au-dessus d'une surface rationnelle 7, la fibre générique
étant une conique sans point rationnel. D'autres variétés de Severi-Brauer

apparaissent dans l'étude des corps d'invariants d'actions linéaires presque
libres de groupes linéaires connexes.

Mais là où les variétés de Severi-Brauer ont sans conteste joué le rôle
le plus important, c'est dans la démonstration des théorèmes de Merkur'ev et

Suslin (1982) sur le groupe K2 des corps, ceci via le calcul de Quillen
(1973) de la K-théorie des schémas de Severi-Brauer. Ces théorèmes ont eu
des applications tant aux algèbres simples centrales sur un corps arbitraire
qu'à l'étude des groupes de Chow des variétés algébriques (classes de cycles

pour l'équivalence rationnelle).

2. Courbes de genre 1

2.1. Avant Châtelet.

En 1901, Poincaré montre qu'une courbe C de genre 1 définie sur un

corps k et qui possède un point /c-rationnel est isomorphe sur son corps de

définition à une courbe elliptique E de Weierstrass :

(E) y2 — x3 + ax + b

laquelle admet naturellement une loi de groupe avec élément neutre le point
à l'infini. Cette loi de groupe en induit une sur l'ensemble E(k) des points
rationnels. Poincaré formule l'hypothèse que pour k le corps Q des rationnels,
le groupe E(Q) est engendré par un nombre fini d'éléments. Ceci fut
démontré par Mordell en 1922 et généralisé par Weil en 1928 au cas où
k est un corps de nombres, et où E est la jacobienne d'une courbe de genre

quelconque. Weil donna aussi une méthode « élémentaire », qui passe par des

« factorisations ». On montre ainsi que pour E donnée par

V (x-e1){x-e2)(x
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on dispose d'une injection

E(k)/2E(k) - (/c*//c*2)2

(x, y) h» (x-e1? x-e2),

qui est d'image finie si k est un corps de nombres (théorème de Mordell-
Weil faible). Nous verrons au paragraphe 3 comment ceci inspira Châtelet

dans un autre contexte.

2.2. La contribution de Châtelet [1938] [1941] [1946a] [1947a].

La motivation initiale de Châtelet était de déterminer quand une courbe C

de genre 1 définie sur un corps k a un point rationnel. Il s'agissait là d'un

projet bien ambitieux: à ce jour on ne possède, dans le cas k Q,
d'aucun algorithme sûr pour ce faire. Voici les résultats que Châtelet obtint
(le corps k est simplement supposé parfait).

1) Pour C de genre 1 définie sur k, il existe une courbe elliptique E
I définie sur k (i.e. E de genre 1, et E(k) / 0) et un isomorphisme,
I défini sur k,

f : É cz C

| 2) A un tel isomorphisme on associe un 1 -cocycle

j °f ° /"1 e Z^G, Aut (£)), où G Gai (k/k).

j 3) On dispose d'une suite exacte de G-groupes :

j 1 -* E(k) Aut (£) -> F -» 1

j où F est un groupe fini, en général égal à {±1}. gn/tte à changer de

j courbe de référence E en 1), on peut assurer que aCT inezit de

I Z1(G, £(/c)). Cette condition détermine la courbe elliptique E (qui n'est
j autre alors que la jacobienne de E).

| 4) Deux courbes C et D de genre 1 définies sur k sont
j isomorphes sur k si et seulement si d'une part elles ont même jacobienne E,

d'autre part il existe b g E(k) tel que aa(C) - afD) - °b - b pour tout
a g G.

5) C(k) est non vide si et seulement si il existe b g E(k) tel que
aG ab — b pour tout a g G.

I"«
En termes modernes, 3) dit que C est un espace principal homogène sous

la courbe elliptique E, et 4) dit que l'ensemble des classes d'isomorphisme
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d'espaces principaux homogènes sous E se plonge dans le groupe (abélien)
de cohomologie H1(G, E(k)).

Ce fut Weil qui, en 1955, montra que ce plongement est en fait une

bijection, si bien que les classes d'isomorphisme d'espaces principaux homogènes

sous E forment un groupe abélien. C'est ce groupe qui fut nommé

en 1957 groupe de Weil-Châtelet WC(E) par Täte, lequel considéra plus

généralement le groupe HX(G, A(k)) pour A une variété abélienne définie

sur k.

Les résultats de Châtelet lui permirent de retrouver des résultats antérieurs
de façon entièrement algébrique :

Il établit d'une part ([1939], [1947c]) le théorème de F. K. Schmidt
(1931) selon lequel toute courbe de genre 1 sur un corps fini F possède

un point rationnel en montrant que les groupes H1(Ga\(Fr/F), E(Fr)) et

E(F)/NE(Fr\ où N est la norme correspondant à l'extension de corps finis
FJE, ont même cardinal et que le dernier groupe est nul, en utilisant le

théorème de Riemann-Roch.

Il retrouva d'autre part ([1949a]) les résultats de Klein, Weichold, Witt
(1934) sur la classification des courbes de genre 1 sur le corps R: si C et

D sont deux courbes de genre 1 sur R de jacobienne E, elles sont
isomorphes à F si E(R) est connexe; si E(R) est disconnexe et ni C ni D

n'ont de point réel, elles sont isomorphes entre elles. Le point ici est

l'isomorphisme i^Gal (C/R), E(C)) ~ E(R)/Nc/r(E(C)) 0 ou Z/2.
Enfin, F. Châtelet a fait quelques pas dans la direction de la suite exacte

de cohomologie (dégagée par Lang et Täte en 1958)

0 E(k)/nE(k) H^G, nE{k)) -> „H^G, E(k)) -> 0

déduite de la suite de G-modules

0 nE(k) -> E{k) A E(k) 0

Dans des cas particuliers [1941], il a vu la structure de groupe sur le

terme médian H1(G, nE(k)), d'où une composition des « n-revêtements ». Mais
il semble bien que ce soit Weil qui ait établi la structure de groupe de

l'ensemble des classes d'isomorphisme d'espaces principaux homogènes sous E.

Il est intéressant de noter que dans ses articles, Châtelet insiste sur le

fait que son analyse permet de ramener la question de l'existence d'un

point rationnel sur C à la connaissance du groupe de Mordell-Weil E(k)

de la courbe jacobienne E associée. Si les deux problèmes sont en fait
essentiellement équivalents, l'approche cohomologique que F. Châtelet a

contribué à introduire a servi de fondement à tous les développements
ultérieurs.
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2.3. Après Châtelet.

On a vu plus haut les développements directs que constituèrent les

articles de Weil (1955) et de Lang-Tate (1958). En 1956, Lang établit que

pour un groupe algébrique connexe quelconque A défini sur un corps fini F,

l'ensemble de cohomologie H1(G, A(F)) est trivial: tout espace principal

homogène sous A est isomorphe à A, ce qui généralise l'approche de

Châtelet du théorème de F. K. Schmidt. En 1957, un exposé fameux de Täte

au séminaire Bourbaki, intitulé « JLC-groups over p-adic fields », établit,

pour k un corps p-adique et A une variété abélienne définie sur k, des

théorèmes de dualité entre A(k) et H1(G, A(k)) qui sont les analogues des

théorèmes de Witt (1934) dans le cas réel.

La théorie des courbes de genre 1 a depuis connu de tels développements

qu'il serait impossible de les évoquer ici. Mentionnons cependant les travaux
de Selmer (1951-1956) et Cassels (1959-1966), et l'introduction du groupe de

Tate-Shafarevitch

Shl(k, E) Ker [WC(E}^YlvWC{EvJ]

où v parcourt les places du corps de nombres k et où Ev est la courbe E
considérée sur le complété kv de k. Ce groupe mesure le défaut du principe
de Hasse pour les espaces principaux homogènes sous E. Sa finitude est

conjecturée et vient seulement d'être établie pour certaines courbes (Rubin,
1986).

2.4. Points de torsion.

Châtelet a aussi consacré plusieurs articles ([1940a], [19406], [19476],
[1950a]) aux « points exceptionnels » des cubiques planes. La tangente en un
point rationnel P d'une cubique plane E recoupe E en un troisième point
rationnel, on prend la tangente en ce nouveau point et l'on recommence : le

point P est dit exceptionnel si après un nombre fini d'itérations on retrouve
le point P. Dans le cas d'une cubique de Weierstrass, ceci revient à dire
que le point P est un point de torsion du groupe E(k). Lorsque k est un
corps de nombres, ce groupe est fini. Pour k Q et E sous forme de
Weierstrass

y1 x3 + ax + 6

avec a et 6 dans Z, Nagell établit en 1935 que si (x, y) e E(Q) est un point
exceptionnel, alors x et y sont dans Z et y est nul ou divise 4a3 + 2762, ce
qui permet une détermination effective des points de torsion. Une méthode
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générale fut développée par E. Lutz (1937) et A. Weil (1936), qui étudièrent
la structure du groupe topologique E(k) lorsque k est un corps p-adique (ce

qu'on peut transcrire aujourd'hui au moyen des groupes formels et des

modèles de Néron). Châtelet attira l'attention sur le fait que la méthode
d'E. Lutz permet la détermination effective des points exceptionnels lorsque
le corps de base k est un corps de nombres quelconque. Dans une note
de 1940, Châtelet observe que les résultats de Lutz permettent de borner
uniformément la torsion des courbes elliptiques définies sur un corps de

nombres k et d'invariant j fixé (il suffit de se placer sur une complétion
p-adique de k; à /c-isomorphisme près, il n'y a alors qu'un nombre fini
de courbes elliptiques d'invariant j donné, et pour chacune d'elles le groupe
de torsion est fini). C'est un problème ouvert de savoir si la condition sur j
peut être omise (dans le cas k Q, c'est un théorème de Mazur que l'ordre
du groupe de torsion est au plus 16).

3. Surfaces cubiques

C'est la partie de l'œuvre de Châtelet qui a joué un grand rôle dans mes
recherches personnelles.

Sauf mention du contraire, les surfaces cubiques ici considérées sont
supposées absolument irréductibles et non coniques. Le corps de base k est

pris de caractéristique zéro.

3.1. Avant Châtelet.

De 1940 à 1944, Mordell et B. Segre s'intéressent aux surfaces cubiques.
Ils montrent que si une telle surface X définie sur k possède un point
rationnel non singulier, alors il existe une application rationnelle dominante
définie sur k d'un plan projectif sur X. En particulier les points rationnels
sont denses pour la topologie de Zariski. B. Segre montre en 1944 qu'une
surface cubique singulière X qui possède un point rationnel non singulier
est /c-rationnelle (/c-birationnelle au plan projectif) sauf si X possède exactement
deux points singuliers conjugués. En 1951, ce même Segre étudie les surfaces

cubiques non singulières. On dit qu'une telle surface contient un Sn si elle

contient un ensemble globalement défini sur k de n droites gauches deux
à deux. Segre montre que si X est /c-rationnelle, alors X contient
nécessairement un St% un S2, un S3 ou un S6 (comme le montrèrent
indépendamment en 1970 Swinnerton-Dyer et Iskovskih, X contient en fait un

S2, un S3 ou un S6). En 1951, Segre donne aussi les premiers exemples
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de surfaces cubiques X qui possèdent un point rationnel non-singulier mais

qui ne sont pas /c-rationnelles. En 1953, Selmer établit le principe de Hasse

pour les surfaces cubiques diagonales

ax3 + by3 + cz3 + dt3 0 ab/cd e /c*3

En 1955, Skolem établit le principe de Hasse pour les surfaces cubiques

singulières.

3.2. La contribution de Châtelet [1953] [1954a] [1954b] [1958]

[1959b] [1966].

Tout d'abord, Châtelet montra qu'une surface cubique non singulière qui
contient un S3 ou un S6 satisfait le principe de Hasse. Ce résultat généralise
le résultat de Selmer mentionné ci-dessus. La clé de la démonstration est

que si X contient un S6, alors X est /c-birationnelle à une surface de

Severi-Brauer. Les notes de 1953 et 1954 contiennent des équations concrètes

pour des surfaces satisfaisant les dites conditions.
Dans [1954b], Châtelet se demande comment décrire l'ensemble X(k)

des points rationnels d'une surface cubique X lorsque k est un corps de

nombres et que X n'est pas /c-rationnelle, ce qui exclut une représentation
paramétrique essentiellement biunivoque. On pourrait a priori chercher un
nombre fini de paramétrisations multivoques (py.X^X avec X(k)

(Jfcpf(Xf(fc)) et chaque Xt k-birationnel au plan projectif PChâtelet
remarque que cela semble très difficile (en 1967, Manin montrera que
c'est en général impossible). Aussi Châtelet fait-il la suggestion très originale
suivante: chercher de telles paramétrisations, mais avec X{ /c-birationnel à

P£ pour un entier n > 2. Il prend alors comme exemple la surface X
d'équation

NKlk(x+ay + (ù 2z)1

avec K k(cd) extension cubique non cyclique du corps de nombres k. Ici
X(k) K*1 est le groupe des éléments de K* de norme 1. Si L/k est la
clôture galoisienne de K/k, G Gai (L/k) < s, i > avec s3 t2 1,

Châtelet montre que l'application

cp: L* -> K*1

x (s(x)/x) • (t(s(x))/x))

a un conoyau fini. La démonstration utilise des factorisations fort rémi-
niscentes de la démonstration du théorème de Mordell-Weil faible. En
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fait, l'application cp est, pour des raisons algébriques, surjective quel que soit
le corps k. Mais la méthode inspira des travaux ultérieurs (voir 3.3).

En 1958, Châtelet s'intéressa à des surfaces cubiques avec deux points
singuliers conjugués:

y2 — az2 (x — e1)(x — e2)(x — e3) {X).

Les résultats qu'il obtint et que je vais maintenant décrire eurent une

grande influence sur les recherches ultérieures.

Pour ces surfaces, appelées depuis surfaces de Châtelet, il établit ([1959b],
[1966]), lorsque k est un corps de nombres, l'existence d'un nombre fini
de paramétrisations pour les points rationnels, du type suggéré plus haut
(les Xt sont ici /c-birationnels à P£). Ici, une seule paramétrisation ne suffit

en général pas à couvrir les points rationnels d'une telle surface.

La méthode est directement inspirée de la démonstration de Weil du

théorème de Mordell-Weil faible. Si K est l'extension quadratique k(y/a) de

k et N désigne la norme de K à k, Châtelet considère l'application:

/ : X(k) (k*/NK*)2

(x, y, z) h-> (x — et, x — e2)

et montre qu'elle a une image finie. Par ailleurs, il montre que le noyau de

/ est constitué des points de X(k) qui sont obtenus à partir de X(K)
par l'application p qui à un point P e X(K) associe le troisième point
d'intersection avec X de la droite passant par P et par le conjugué de P

(composition de P et de son conjugué). Cette application peut être vue comme

l'application cpx : X±(k) X(k) induite par une application rationnelle définie

sur k de la k-variété algébrique Xx RK/k(XK) vers X. Ici RKjk est le

foncteur de descente « à la Weil » qui transforme une variété définie sur K
en variété définie sur k, en multipliant la dimension par le degré de K sur k.

Soit S le k-tore algébrique défini par u\ — av\ 1, u\ — av\ 1, et soit
PT l'espace principal homogène sur X sous S défini par les équations

x - ex u\ - av \ x - e2 u\ - av\

Ce que Châtelet établit plus précisément, c'est d'une part que l'application

rationnelle RK/k{XK) -> X définie par la « composition » se factorise par une

application i : RK/k(XK) -> d'autre part, par un calcul explicite et qui à ce

jour n'a pas encore perdu tout son mystère, que l'application i est /c-bira-

tionnelle. Ce calcul est analogue à la présentation de la multiplication par 2

sur une courbe de Weierstrass E comme espace principal homogène sur E

sous le groupe ji2 x M-2 donné par les équations x — e1 — uf,x — e2 u \.
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Comme XK est évidemment une surface K-rationnelle, la fc-variété

RK/k(XK) est /^-rationnelle, si bien que l'on a paramétré les points du

noyau de /. Pour paramétrer les points de X(k) d'image non triviale par /,
Châtelet observe par un calcul fort instructif que pour tout oc /(PoX

les points M de /_1(a) Œ x(k) sont obtenus à partir des points de cpi(^i(^))

en appliquant la « symétrie » par rapport au point P0.

3.3. Après Châtelet.

Les travaux consécutifs à ceux de Châtelet se sont en général placés

dans la perspective plus large de l'étude des surfaces rationnelles et aussi

de certaines variétés rationnelles de dimension plus grande. Comme ces

travaux ont fait récemment l'objet d'exposés généraux (Manin/Tsfasman 1986,

l'auteur 1986), on se contentera ici de décrire les développements ayant trait
directement aux recherches de Châtelet.

Manin et Iskovskih, généralisant des résultats d'Enriques (1897) ont établi

une classification /c-birationnelle des surfaces rationnelles. Dans cette classification,

les surfaces de Châtelet généralisées :

y1 — az1 P(x), deg P ^ 4

apparaissent comme les surfaces arithmétiquement non-triviales les plus
simples. Elles ont servi de banc d'essai pour toutes les conjectures concernant
les variétés rationnelles, conjectures dont on a quelques raisons d'espérer

qu'elles s'insèrent dans un ensemble bien plus vaste, sortant du cadre des

variétés rationnelles.

Pour la commodité de l'exposé, disons que l'on s'est intéressé aux trois
thèmes suivants :

k-rationalité. Si X est une surface (variété) rationnelle avec un /c-point
non singulier, qu'est-ce qui empêche X d'être /c-rationnelle, ou du moins
/c-stablement rationnelle (X x P'k /c-birationnel à P£), et y a-t-il une différence
entre ces deux notions (problème de Zariski, mentionné par B. Segre en

1950)?

Principe de Hasse. Si k est un corps de nombres, décrire l'obstruction à

la validité du principe de Hasse.

Description des points rationnels. Si k est un corps de nombres, et

X(k) ^ 0, obtenir des paramétrisations finies du type de Châtelet pour
d'autres classes de variétés. A défaut, décrire des relations d'équivalence sur
X(k) approchant la décomposition en classes de paramétrisation.
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Manin et Voskresenskii dégagèrent le rôle important du module galoisien
Pic (X) (X variété rationnelle projective et lisse) dans l'étude de la k-rationalité
(stable). Ainsi, au moins en caractéristique zéro, le groupe H1(G, Pic (X))
est un invariant /c-birationnel qui est essentiellement équivalent à un autre
invariant, le groupe de Brauer-Grothendieck de X. Ces invariants permettent
souvent de reconnaître qu'une /c-variété rationnelle n'est pas k-rationnelle,
ce bien qu'elle possède un point rationnel.

Swinnerton-Dyer donna dès 1962 des contre-exemples au principe de

Hasse pour les surfaces cubiques lisses, et d'autres suivirent pour d'autres

types de surfaces rationnelles. Manin (1970) mit de l'ordre dans ces contre-
exemples, en les interprétant au moyen du groupe de Brauer-Grothendieck.

Dans son livre sur les formes cubiques (1970), Manin donne aussi son

point de vue sur la paramétrisation des points rationnels des surfaces de

Châtelet. Il introduit d'une part la notion de ^-équivalence sur les points
(être liés par une chaîne de courbes de genre zéro), d'autre part l'équivalence
de Brauer, via l'accouplement naturel X(k) x Br X -> Br k. Il se trouve

que pour les surfaces de Châtelet ces deux notions coïncident, mais il n'en

est plus ainsi pour les surfaces de Châtelet généralisées.

En 1970, je passai une année à Cambridge (Angleterre) et P. Swinnerton-

Dyer me suggéra de comprendre en profondeur les calculs assez mystérieux
de Châtelet, ce afin de généraliser les résultats à d'autres variétés. En 1974,

je pus ainsi interpréter une partie des calculs de Châtelet grâce à

l'utilisation de torseurs sous des tores particuliers (ainsi le calcul fort instructif
mentionné à la fin de 3.2 peut être interprété au moyen d'une généralisation
de la loi de réciprocité d'A. Weil).

En 1976, Sansuc et moi-même, inspirés par les articles de Châtelet de

1954 et 1959 d'une part et par les travaux de Manin et Voskresenskii
d'autre part, établîmes pour les points rationnels des tores algébriques

l'analogue du résultat de paramétrisation finie de Châtelet. Ce résultat peut
s'interpréter dans la perspective de la « descente » sur les points rationnels
d'une variété rationnelle X. Comme Châtelet, on utilise des torseurs sur X
sous des tores, plutôt que le groupe de Brauer-Grothendieck (de tels torseurs
donnent une meilleure approximation de la P-équivalence sur X(/c)). En 1984,

Sansuc, Swinnerton-Dyer et moi-même pûmes compléter le programme de la
descente pour toutes les surfaces de Châtelet généralisées. Ainsi, si une telle
surface X possède un /c-point et si l'invariant Pic (X) est « trivial », alors X
est stablement k-rationnelle. Comme d'autres invariants, non stables,

permettent parfois de montrer que X n'est pas /c-rationnelle, ceci mena à une

réponse négative au problème de Zariski, tant pour les surfaces sur Q
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(exemple: y2+ 3z2 x3-2) que pour les variétés de dimension 3 sur C

(résultat obtenu en collaboration avec Beauville). Par ailleurs, l'obstruction de

Manin au principe de Hasse (donnée par le groupe de Brauer-Grothendieck)

est ici la seule, et ceci permet de déterminer effectivement si une telle surface a

un point rationnel. Enfin, les points rationnels d'une telle surface peuvent

être décrits au moyen d'un nombre fini de paramétrisations par des variétés

/c-rationnelles.

Dans ses recherches, François Châtelet ne s'est jamais enlisé dans un

formalisme gratuit. Les idées qu'il a lancées sont encore fécondes aujourd'hui,
et j'aimerais en conclusion redire combien elles m'ont marqué.
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