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L’Enseignement Mathématique, t. 34 (1988), p. 387-405

LES GRANDS THEMES DE FRANCOIS CHATELET %)

par Jean-Louis COLLIOT-THELENE

Les travaux mathématiques de F. Chatelet ont porté principalement sur
la géométrie diophantienne, et il a contribué de fagon significative et tres
originale a I'arithmétique de trois classes de variétés algébriques: les variétés
de Severi-Brauer, les courbes de genre 1 et les surfaces cubiques. Il s’est
aussi intéressé aux points exceptionnels (points de torsion) sur les courbes
elliptiques, ainsi qu’aux quadriques et hyperquadriques.

Pour rendre compte de ces travaux, jutiliserai quelques notations usuelles
en géométrie algébrique. Etant donnée X/k une variété algébrique définie
sur un corps k (ie. définie par un systeme d’équations a coefficients
dans k) on note X(k) 'ensemble des points k-rationnels de X (solutions a
coefficients dans k). Si L est un surcorps de k, on note X, la variété X
considérée sur L et X(L) les points L-rationnels de X. Etant donnée k
une cloture séparable de k, on note X = X;. On note P 'espace projectif
de dimension n sur le corps k.

1. VARIETES DE SEVERI-BRAUER

1.1. AvVANT CHATELET.

Les variétés de Severi-Brauer sont des généralisations en dimension
supérieure des coniques. Voici quelques propriétés bien connues des coniques.
Une conique C = P? qui posséde un point rationnel est k-isomorphe a
P, (Diophante; C’est la paramétrisation par les droites passant par un point).
Si une conique posséde un point rationnel dans une extension de degré
impair de k, elle posséde un point k-rationnel. Si k est un corps fini,
toute conique posséde un point rationnel. Si k est le corps R des réels,

b Frangois Chételet, professeur a I'Université de Besangon depuis 1949, est décédé
le 19 avril 1987 dans sa 75° année. 11 faisait partie de la rédaction de L’Enseignement
Mathématique depuis 1960. Le présent exposé a été fait a Besangon, le 28 sep-
tembre 1987, lors de la réunion a4 la mémoire de F. Chatelet. ’
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toute conique est R-isomorphe soit a Pg soit 4 x* + y* + z> = 0. Si
k est le corps Q des rationnels, les conditions de congruence (et la condition
réelle) suffisent & assurer l'existence d’un point Q-rationnel (Legendre). Plus
géneralement, si k est un corps de nombres, la condition C(k,) # @
pour chaque complété k, de k en une place v assure C(k) # @ (principe
de Hasse).

Comme toute courbe (projective et lisse) définie sur k et de genre O,
cest-a-dire isomorphe, sur k, a P_; est k-isomorphe a une conique (Max
Noether 1884, Hilbert/Hurwitz 1884, Poincaré 1901), toute telle courbe C
satisfait les propriétés ci-dessus. En outre, il existe une extension au plus
quadratique K de k telle que C(K) soit non vide. Notons enfin la propriéteé,
quon peut attribuer a Hasse (1924): si deux courbes de genre zéro C
et D deéfinies sur un corps de nombres k sont isomorphes sur tous les
complétés k, de k, elles sont isomorphes sur k.

D’un point de vue géométrique, les courbes mentionnées ci-dessus
admettent deux extensions naturelles en dimension plus grande que 1: les
quadriques et les variétés de Severi-Brauer. Pour les quadriques, 'analogue
de la plupart des propriétés ci-dessus, et tout spécialement le principe de
Hasse, furent établis par Hasse dans ses mémoires sur les formes quadratiques
(1923/1924).

Définition. Une variété X de dimension d définie sur le corps k est dite
de Severi-Brauer si X est isomorphe & P; (isomorphe sans exceptions).

C’est dans la these de Frangois Chéatelet que furent développées systé-
matiquement les propriétés de ces variétés. Néanmoins, comme le note
B. Segre en 1949, cette notion apparait pour la premiere fois chez Severi
(1932) qui donne une démonstration géometrique du théoreme: si X(k)
est non vide, alors X est k-isomorphe a P¢. Par ailleurs, dans le cas
d = 1, Witt (1934) et Hasse (1935) notent la correspondance entre coniques
et algébres de quaternions. Les algébres de quaternions (Hamilton, Frobenius)
sont un cas spécial des algebres centrales simples (Dickson, Wedderburn, 1905),
qui sont les k-algébres A telles qu’il existe un isomorphisme de k-algébres
A®, k~ M, (k) (M, (k) est algebre des matrices (n, n) sur le corps k). Les
propriétés des algébres centrales simples (« systémes hypercomplexes ») furent
dégagées par Brauer, Hasse, E. Noether et Albert entre 1927 et 1934, et
Deuring leur consacra son livre Algebren en 1935.

Rappelons ici les propriétés principales. Une k-algebre simple centrale
A est k-isomorphe a une k-algebre M,(D) ou D est un corps gauche de
centre k, le degré [D: k] étant un carré i*. On appelle i 'index de A. Pour
k = R, les seuls corps gauches de dimension finie sur leur centre R sont R

Ny
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lui-méme et H I'algébre des quaternions de Hamilton (Frobenius). Si k est
un corps fini, toute algébre simple centrale sur k est de la forme M, (k)
(Wedderburn). Enfin, si k est un corps de nombres, et si A ®, k, ~ M,(k,)
pour toute place v de k, alors A ~ M, (k) comme k-algébre (Brauer/Hasse/
Noether, Albert). Par ailleurs, Skolem et Noether identifierent le groupe des
automorphismes d’une k-algebre simple centrale 4 au quotient A*/k* (le
groupe des unités A* agissant par conjugaison intérieure). De son coOte,
Brauer organisa les classes d’algebres simples centrales sur k en un groupe,
dit depuis groupe de Brauer de k, via le produit tensoriel des algebres,
les algebres « déployées » M, (k) étant considérées comme triviales. Ceci
'amena a introduire les « systémes de facteurs », qui sont I'un des ancétres
de la cohomologie des groupes.

1.2. LA CONTRIBUTION DE F. CHATELET [1943a] [1943b] [1944].

Dans sa thése [1944], Frangois Chatelet généralisa aux variétés de
Severi-Brauer tous les résultats connus pour les coniques:

THEOREME. Soient X et Y deux variétés de Severi-Brauer de dimen-
sion d sur le corps k.

1) Si X(k) est non vide, alors X est k-isomorphe a P¢.

2) Il existe un corps K contenant k et de degré [K:k] divisant
(d+1) tel que X(K) soit non vide.

3) Si L est une extension finie de k, X(L) non vide et [L:k] premier
a (d+1), alors X posséde un k-point rationnel.

4) Si k estfinii X estk-isomorphe a P¢.

5) Si k est un corps de nombres, et Xy, = Y, pour toute place v
de k, alors X est k-isomorphe a Y.

En particulier, si X(k,) est non vide pour chaque place v de k, alors X
possede un k-point rationnel.

Quelle est la méthode de Chatelet? Pour reprendre le langage de sa
these, il considére une extension galoisienne finie K/k de groupe G et une
variété de (Severi-)Brauer de dimension d « admettant K comme corps de
représentation » (les groupes profinis n’avaient pas encore fait leur appa-
rition). A une telle variété est attaché un « systéme de matrices associées »
(« Algébre de Brauer de degré d+1 »). Enfin a une telle algebre est attaché
un « systeme de scalaires associés ».
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En termes d’aujourd’hui, Chitelet s’intéresse aux classes d’isomorphismes
de k-variétés X qui deviennent isomorphes a P% sur K. Un calcul depuis
bien connu (chez Chatelet, la relation caractérisant les 1-cocycles apparait
sous le nom de «relation de compatibilité ») associe a une telle k-variété
une classe dans I’ensemble de cohomologie H'(G, Autg(P%)), et montre que
deux telles k-variétés X et Y sont k-isomorphes si et seulement si elles
ont méme classe de cohomologie. En fait, comme P¢ est une variété rai-
sonnable, on sait que toute classe de cohomologie provient d’une variété
de Severi-Brauer, ce que Chatelet semble avoir vu et qui fut plus tard
démontré par Weil (1956).

Ce qui permet alors a Chatelet d’obtenir le théoréme ci-dessus, c’est le
double isomorphisme:

Autg(P%) ~ PGL,,,(K) (tout automorphisme de Iespace projectif est
donné par une homographie)

Auty(M,,,(K)) ~ PGL,,,(K) (Skolem-Noether).

Les « systemes de matrices associés » ne sont autres que les 1-cocycles a
valeurs dans PGL,, ,(K); quant aux « systémes de scalaires associés » a un tel
I-cocycle, c’est un 2-cocycle dont la classe de cohomologie dans le sous-
groupe H?*(G, K*) du groupe de Brauer de k est obtenue a partir du
l-cocycle via la suite exacte G-équivariante de groupes:

1> K*—> GL;{(K)—> PGL,;,,(K)—>1.

Le méme principe général que plus haut, et dont, rappelons-le, Chatelet
fut Pun des principaux inventeurs, dit que lensemble H'(G, PGL,.(K))
classifie aussi les k-algebres simples centrales de degré d + 1 qui sont déployées
par passage au corps K. Chatelet obtient ainsi tous les résultats sur les
variétés de Severi-Brauer a partir des résultats connus sur les algebres
centrales simples.

Le mémoire de 1944 contient un autre résultat, oublié jusqu’a sa remise
au golt du jour par M. Artin en 1982: F. Chaitelet appelle « sous-variété
normale » Y d’une variété de Severi-Brauer X une sous-variété fermée telle
que ¥ © X ~ P; soit un espace linéaire (ce qui ne dépend pas de I'iso-
morphisme choisi). Définissant i(X) comme étant le plus petit des entiers r
tels qu'il existe une sous-variété normale Y < X de dimension (r—1),
Chatelet montre que i(X) coincide avec I'index (de la classe) d’'une algebre
simple centrale associée a X par la correspondance ci-dessus (ceci géneralise
le point 1) du théoreme).

Glissons ici un mot sur les articles de Chatelet consacrés a 'arithmétique
des (hyper)quadriques (1948). Chatelet y examine d’'un point de vue géomé-

4
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trique les transformations qui permettent de passer d’une quadrique non-
singuliére X de P? & une conique de P? définie sur I'extension discriminant
et ainsi en particulier d’obtenir le principe de Hasse pour ces quadrigues.

1.3. APRES LES TRAVAUX DE CHATELET.

En 1949, B. Segre tout en rendant hommage au travail de Chatelet
rappelle I'existence du travail de Severi (1932) qui avait échappé a l'attention
de Chatelet, et indique en particulier que Severi par ses méthodes avait
obtenu (d+ 1)* au point 2) du théoréme ci-dessus. C’est dans cet article que
Segre transforme les « variétés de Brauer » de Chatelet en « variétés de
Severi-Brauer ». Convenons qu’il eut été plus juste de les appeler variétés
de Severi-Chatelet.

Alors que la théorie de Chatelet insiste de fagon trées moderne sur
I'isomorphie sans exceptions, Amitsur en 1955 refait la théorie d’'un point
de vue plus birationnel (corps de décomposition « générique » d’une algebre
centrale simple) et redémontre ’énoncé 2) du théoréme ci-dessus. Il établit
le résultat intéressant suivant: si X et Y sont deux k-variétés de Severi-
Brauer k-birationnellement équivalentes, les classes a(X) et a(Y) qui leurs sont
associées dans le groupe de Brauer de k engendrent le méme sous-groupe.
On ignore si la réciproque vaut. Le point de vue de 'ensemble de cohomologie
H'(Gal(K/k), PGL,, (K)) réapparait dans un article de Roquette (1963).
Signalons aussi un article d’Amitsur (1981).

Le point de vue moderne sur les variétés de Severi-Brauer qui a été
esquisse plus haut fut dégage par Serre dans ses livres Corps locaux (1962)
et Cohomologie galoisienne (1965). Apres l'introduction des algébres d’Azu-
maya, qui géneéralisent les algebres simples centrales, le corps de base étant
remplacé par un anneau commutatif (Azumaya 1951, Auslander/Goldman
1960), Grothendieck (1965) dans une série magistrale d’exposés sur le groupe
de Brauer d’un schéma étudie les schémas de Severi-Brauer relatifs.

1.4. IMPORTANCE DES VARIETES DE SEVERI-BRAUER.

En arithmétique, les variétés de Severi-Brauer servent de référence dans
étude des variétés rationnelles plus générales (une variété X est dite ration-
nelle si elle devient birationnellement équivalente (mais non nécessairement
isomorphe) a I'espace projectif sur une extension finie de son corps de base.)
Pour d > 1, aucune des propriétés du théoréme ci-dessus ne vaut en général,
mais on peut essayer de trouver des substituts. Nous reviendrons la-dessus
au paragraphe 3.

28
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En géométrie, i.e. dans I’étude des variétés définies sur le corps des
nombres complexes, les variétés de Severi-Brauer jouent un grand role
comme fibre générique de morphismes X — Y, dans I’étude des variétés qui
sont « proches d’étre rationnelles »: variétés unirationnelles de divers types.
Ainsi, le fameux contre-exemple d’Artin/Mumford (1972) au probléme de
Luroth en dimension 3 (une variété qui est dominée par une variété
rationnelle n’est pas nécessairement rationnelle) est-il fourni par une telle
variété X fibrée au-dessus d’une surface rationnelle Y, la fibre générique
étant une conique sans point rationnel. D’autres variétés de Severi-Brauer
apparaissent dans P'étude des corps d’invariants d’actions linéaires presque
libres de groupes linéaires connexes.

Mais la ou les variétés de Severi-Brauer ont sans conteste joué le role
le plus important, c’est dans la démonstration des théorémes de Merkur’ev et
Suslin (1982) sur le groupe K, des corps, ceci via le calcul de Quillen
(1973) de la K-théorie des schémas de Severi-Brauer. Ces théorémes ont eu
des applications tant aux algébres simples centrales sur un corps arbitraire
qu’a létude des groupes de Chow des variétes algébriques (classes de cycles
pour ’équivalence rationnelle).

2. COURBES DE GENRE 1

2.1. AvaNT CHATELET.

En 1901, Poincaré montre quune courbe C de genre 1 définie sur un
corps k et qui possede un point k-rationnel est isomorphe sur son corps de
définition a une courbe elliptique E de Weierstrass:

(E) y2 = x>+ ax + b,

laquelle admet naturellement une loi de groupe avec ¢lément neutre le point
a 'infini. Cette loi de groupe en induit une sur Pensemble E(k) des points
rationnels. Poincaré formule I'hypothése que pour k le corps Q des rationnels,
le groupe E(Q) est engendré par un nombre fini d’¢léments. Ceci fut
démontré par Mordell en 1922 et généralis¢ par Weil en 1928 au cas ou
k est un corps de nombres, et ou E est la jacobienne d’une courbe de genre
quelconque. Weil donna aussi une méthode « élémentaire », qui passe par des
« factorisations ». On montre ainsi que pour E donnée par

y2 = (x—e;) (x—e;) (x—e3)
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on dispose d’une injection

E(k)/2E(k) — (k*/k**)*

(x, y) = (x—ey, x—e,),

qui est d’image finie si k est un corps de nombres (théoréme de Mordell-
Weil faible). Nous verrons au paragraphe 3 comment ceci inspira Chatelet
dans un autre contexte.

2.2. LA CONTRIBUTION DE CHATELET [1938] [1941] [1946a] [19474].

La motivation initiale de Chatelet était de déterminer quand une courbe C
de genre 1 définie sur un corps k a un point rationnel. Il s’agissait la d’un
projet bien ambitieux: a ce jour on ne possede, dans le cas k = Q,
d’aucun algorithme sGr pour ce faire. Voici les résultats que Chatelet obtint
(le corps k est simplement supposé parfait).

1) Pour C degenre 1 définie sur k, il existe une courbe elliptique E

définie sur k (ie. E de genre 1, et E(k) # @) et un isomorphisme,
défini sur k,

f:E~C.

2) A un tel isomorphisme on associe un 1-cocycle

a, = °f o fT1eZYG, Aut(E)), ou G = Gal(k/k).
3) On dispose d’une suite exacte de G-groupes :
1 - E(k) - Aut(E) > F > 1,

ou F est un groupe fini, en général égal a {+ 1}. Quitte a changer de
courbe de référence E en 1), on peut assurer que a, vient de
ZY(G, E(k)). Cette condition détermine la courbe elliptique E (qui n’est
autre alors que la jacobienne de E).

4) Deux courbes C et D de genre 1 définies sur k sont
isomorphes sur k si et seulement si d’une part elles ont méme jacobienne E,
d’autre part il existe be E(k) tel que a,(C) — a D) = °b — b pour tout
ceqG.

5) C(k) est non vide si et seulement si il existe be E(k) tel que
a, = °b — b pour tout ceG.

En termes modernes, 3) dit que C est un espace principal homogene sous
la courbe elliptique E, et 4) dit que ’ensemble des classes d’isomorphisme
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d’espaces principaux homogénes sous E se plonge dans le groupe (abélien)
de cohomologie H(G, E(k)).

Ce fut Weil qui, en 1955, montra que ce plongement est en fait une
bijection, si bien que les classes d’isomorphisme d’espaces principaux homo-
genes sous E forment un groupe abélien. C’est ce groupe qui fut nommé
en 1957 groupe de Weil-Chatelet WC(E) par Tate, lequel considéra plus
généralement le groupe H(G, A(k)) pour A une variété abélienne définie
sur k.

Les résultats de Chatelet lui permirent de retrouver des résultats antérieurs

de fagon entierement algébrique:

Il établit d’une part ([1939], [1947c]) le théoréme de F. K. Schmidt
(1931) selon lequel toute courbe de genre 1 sur un corps fini F possede
un point rationnel en montrant que les groupes H'(Gal(F,/F), E(F,)) et
E(F)/NE(F,), ou N est la norme correspondant a I'extension de corps finis
F,/F, ont méme cardinal et que le dernier groupe est nul, en utilisant le
théoreme de Riemann-Roch.

Il retrouva d’autre part ([1949a]) les résultats de Klein, Weichold, Witt
(1934) sur la classification des courbes de genre 1 sur le corps R: st C et
D sont deux courbes de genre 1 sur R de jacobienne E, elles sont iso-
morphes a E si E(R) est connexe; si E(R) est disconnexe et ni C ni D
n'ont de point réel, elles sont isomorphes entre elles. Le point ici est
Pisomorphisme H*(Gal (C/R), E(C)) ~ E(R)/N¢g(E(C)) = 0 ou Z/2.

Enfin, F. Chatelet a fait quelques pas dans la direction de la suite exacte
de cohomologie (dégagée par Lang et Tate en 1958)

0 — E(k)/nE(k) - HY(G, ,E(k)) » ,HY(G, E(k)) — 0
déduite de la suite de G-modules
0 = ,E(k) ~ E(k) = E(k) - 0.
Dans des cas particuliers [1941], il a vu la structure de groupe sur le
terme médian HY(G, ,E(k)), d’ou une composition des « n-revétements ». Mais
il semble bien que ce soit Weil qui ait établi la structure de groupe de
I’ensemble des classes d’isomorphisme d’espaces principaux homogenes sous E.

Il est intéressant de noter que dans ses articles, Chatelet insiste sur le
fait que son analyse permet de ramener la question de lexistence d’un
point rationnel sur C a la connaissance du groupe de Mordell-Weil E(k)
de la courbe jacobienne E associée. Si les deux problemes sont en fait
essentiellement équivalents, 'approche cohomologique que F. Chatelet a
contribué a introduire a servi de fondement a tous les développements
ultérieurs.
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2.3. APRES CHATELET.

On a vu plus haut les développements directs que constituérent les
articles de Weil (1955) et de Lang-Tate (1958). En 1956, Lang établit que
pour un groupe algébrique connexe quelconque A défini sur un corps fini F,
Iensemble de cohomologie H'(G, A(F)) est trivial: tout espace principal
homogeéne sous A est isomorphe a A, ce qui généralise I'approche de
Chatelet du théoréme de F. K. Schmidt. En 1957, un exposé fameux de Tate
au séminaire Bourbaki, intitulé « WC-groups over p-adic fields », établit,
pour k un corps p-adique et A une variété abélienne définie sur k, des
théorémes de dualité entre A(k) et HY(G, A(k)) qui sont les analogues des
théorémes de Witt (1934) dans le cas réel.

La théorie des courbes de genre 1 a depuis connu de tels développements
qu’il serait impossible de les évoquer ici. Mentionnons cependant les travaux
de Selmer (1951-1956) et Cassels (1959-1966), et 'introduction du groupe de
Tate-Shafarevitch

Sh!(k, E) = Ker [WC(E)-TI,WC(E,)],

ou v parcourt les places du corps de nombres k et ou E, est la courbe E
considerée sur le compléte k, de k. Ce groupe mesure le défaut du principe
de Hasse pour les espaces principaux homogenes sous E. Sa finitude est
conjecturée et vient seulement d’€tre établie pour certaines courbes (Rubin,
1986).

2.4. POINTS DE TORSION.

Chételet a aussi consacré plusieurs articles ([1940a], [1940b], [1947h],
[1950a]) aux « points exceptionnels » des cubiques planes. La tangente en un
point rationnel P d’une cubique plane E recoupe E en un troisiéme point
rationnel, on prend la tangente en ce nouveau point et 'on recommence: le
point P est dit exceptionnel si aprés un nombre fini d’itérations on retrouve
le point P. Dans le cas d’'une cubique de Weierstrass, ceci revient a dire
que le point P est un point de torsion du groupe E(k). Lorsque k est un
corps de nombres, ce groupe est fini. Pour k = Q et E sous forme de
Weierstrass

y 2 =x>4+ax+ b

avec a et b dans Z, Nagell etablit en 1935 que si (x, y) € E(Q) est un point
exceptionnel, alors x et y sont dans Z et y est nul ou divise 4a3 + 27b%, ce
qui permet une détermination effective des points de torsion. Une méthode
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générale fut développée par E. Lutz (1937) et A. Weil (1936), qui étudiérent
la structure du groupe topologique E(k) lorsque k est un corps p-adique (ce
quon peut transcrire aujourd’hui au moyen des groupes formels et des
modeles de Néron). Chatelet attira l'attention sur le fait que la méthode
d’E. Lutz permet la détermination effective des points exceptionnels lorsque
le corps de base k est un corps de nombres quelconque. Dans une note
de 1940, Chatelet observe que les résultats de Lutz permettent de borner
uniformément la torsion des courbes elliptiques définies sur un corps de
nombres k et d’invariant j fixé (il suffit de se placer sur une complétion
p-adique de k; a k-isomorphisme pres, il n’y a alors quun nombre fini
de courbes elliptiques d’invariant j donné, et pour chacune d’elles le groupe
de torsion est fini). C’est un probléme ouvert de savoir si la condition sur j
peut €tre omise (dans le cas k = Q, c’est un théoreme de Mazur que 'ordre
du groupe de torsion est au plus 16).

3. SURFACES CUBIQUES

C’est la partie de 'ceuvre de Chatelet qui a joué¢ un grand role dans mes
recherches personnelles.

Sauf mention du contraire, les surfaces cubiques ici considérées sont
supposées absolument irréductibles et non coniques. Le corps de base k est
pris de caracteristique z€ro.

3.1. AvaNT CHATELET.

De 1940 a 1944, Mordell et B. Segre s’intéressent aux surfaces cubiques.
[Is montrent que si une telle surface X définie sur k posseéde un point
rationnel non singulier, alors il existe une application rationnelle dominante
définie sur k d’'un plan projectif sur X. En particulier les points rationnels
sont denses pour la topologie de Zariski. B. Segre montre en 1944 qu’une
surface cubique singuliére X qui possede un point rationnel non singulier
est k-rationnelle (k-birationnelle au plan projectif) sauf si X possede exactement
deux points singuliers conjugués. En 1951, ce méme Segre étudie les surfaces
cubiques non singulieres. On dit qu'une telle surface contient un S, si elle
contient un ensemble globalement défini sur k de n droites gauches deux
a deux. Segre montre que si X est k-rationnelle, alors X contient néces-
sairement un S;, un S,, un S; ou un S, (comme le montrérent indé-
pendamment en 1970 Swinnerton-Dyer et Iskovskih, X contient en fait un
S,, un S; ou un S¢). En 1951, Segre donne aussi les premiers exemples
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de surfaces cubiques X qui possédent un point rationnel non-singulier mais
qui ne sont pas k-rationnelles. En 1953, Selmer établit le principe de Hasse
pour les surfaces cubiques diagonales

ax® + by® + cz® +dt* = 0, abledek*’.

En 1955, Skolem établit le principe de Hasse pour les surfaces cubiques
singulieres.

3.2. LA CONTRIBUTION DE CHATELET [1953] [1954a] [1954b] [1958]
[1959b] [1966].

Tout d’abord, Chatelet montra qu'une surface cubique non singuliere qui
contient un S; ou un S, satisfait le principe de Hasse. Ce résultat généralise
le résultat de Selmer mentionné ci-dessus. La clé de la démonstration est
que si X contient un S, alors X est k-birationnelle a une surface de
Severi-Brauer. Les notes de 1953 et 1954 contiennent des équations concretes
pour des surfaces satisfaisant les dites conditions.

Dans [1954b], Chatelet se demande comment décrire ensemble X(k)
des points rationnels d’'une surface cubique X lorsque k est un corps de
nombres et que X n’est pas k-rationnelle, ce qui exclut une représentation
parametrique essentiellement biunivoque. On pourrait a priori chercher un
nombre fini de paramétrisations multivoques @;: X; —» X avec X(k)
= [ )i 0i(X;(k)) et chaque X; k-birationnel au plan projectif P2. Chatelet
remarque que cela semble trés difficile (en 1967, Manin montrera que
C’est en genéral impossible). Aussi Chatelet fait-il la suggestion trés originale
suivante: chercher de telles paramétrisations, mais avec X, k-birationnel a

Py pour un entier n > 2. Il prend alors comme exemple la surface X
d’équation

Ngp(x+oy+ow’z) = 1
avec K = k(w) extension cubique non cyclique du corps de nombres k. Ici
X(k) = K*' est le groupe des éléments de K* de norme 1. Si L/k est la

cloture galoisienne de K/k, G = Gal(L/k) = <s,t> avec s° = t2 = |
Chatelet montre que I'application

>

@: L* - K*!
x> (s(0)/) - (¢ (s(x))/)

a un conoyau fini. La démonstration utilise des factorisations fort rémi-
niscentes de la démonstration du théoréme de Mordell-Weil faible. En
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fait, application @ est, pour des raisons algébriques, surjective quel que soit
le corps k. Mais la méthode inspira des travaux ultérieurs (voir 3.3).

En 1958, Chatelet s’intéressa a des surfaces cubiques avec deux points
singuliers conjugués:

y2 — az’ = (x—ey) (x—ey) (x—e3) (X).

Les résultats qu’il obtint et que je vais maintenant décrire eurent une
grande influence sur les recherches ultérieures.

Pour ces surfaces, appelées depuis surfaces de Chatelet, il établit ([19595],
[1966]), lorsque k est un corps de nombres, I'existence d’'un nombre fini
de paramétrisations pour les points rationnels, du type suggéré plus haut
(les X, sont ici k-birationnels & P}). Ici, une seule paramétrisation ne suffit
en général pas a couvrir les points rationnels d’une telle surface.

La méthode est directement inspirée de la démonstration de Weil du

théoréeme de Mordell-Weil faible. Si K est I’extension quadratique k(\/g) de
k et N désigne la norme de K a k, Chatelet considere I'application:

[ X(k) - (k*/NK*)
(x, ¥, 2) > (x—e;, x—e,)

et montre qu’elle a une image finie. Par ailleurs, il montre que le noyau de
f est constitué des points de X(k) qui sont obtenus a partir de X(K)
par lapplication p qui a un point P e X(K) associe le troisieme point
d’intersection avec X de la droite passant par P et par le conjugué de P
(composition de P et de son conjugue). Cette application peut étre vue comme
I'application ¢, : X (k) — X (k) induite par une application rationnelle définie
sur k de la k-variéte algebrique X; = Ry (Xg) vers X. Ici Ry est le
foncteur de descente « a la Weil » qui transforme une variété définie sur K
en variéeté définie sur k, en multipliant la dimension par le degré de K sur k.
Soit S le k-tore algébrique défini par u — avi = 1, u3 — av? = 1, et soit
I l’espace principal homogene sur X sous S défini par les équations

x —e, =ul—av?, x—e, = us— avj.
Ce que Chételet établit plus précisément, c’est d’une part que I'application
rationnelle Ry, (Xx) — X définie par la « composition » se factorise par une
application i: Ry (Xg) — 7, d’autre part, par un calcul explicite et qui a ce
jour n’a pas encore perdu tout son mystere, que I'application i est k-bira-
tionnelle. Ce calcul est analogue a la présentation de la multiplication par 2
sur une courbe de Weierstrass E comme espace principal homogene sur E
sous le groupe p, X W, donné par les equations x — e; = ul, x — 2y, = ui,

|
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Comme X, est ¢videmment une surface K-rationnelle, la k-variété
X, = Ryu(Xg) est k-rationnelle, si bien que Pon a paramétré les points du
noyau de f. Pour paramétrer les points de X(k) d’image non triviale par f,
Chatelet observe par un calcul fort instructif que pour tout o = f(Po),
les points M de f~ (o) = X(k) sont obtenus a partir des points de ¢ (X (k)
en appliquant la « symétrie » par rapport au point Py .

3.3. APRES CHATELET.

Les travaux consécutifs a ceux de Chitelet se sont en général places
dans la perspective plus large de I'étude des surfaces rationnelles et aussi
de certaines variétés rationnelles de dimension plus grande. Comme ces
travaux ont fait récemment 'objet d’exposés généraux (Manin/Tsfasman 1986,
Pauteur 1986), on se contentera ici de décrire les développements ayant trait
directement aux recherches de Chatelet.

Manin et Iskovskih, généralisant des résultats d’Enriques (1897) ont établi
une classification k-birationnelle des surfaces rationnelles. Dans cette classifi-
cation, les surfaces de Chatelet généralisces:

y? — az? = P(x), degP <4

apparaissent comme les surfaces arithmétiquement non-triviales les plus
simples. Elles ont servi de banc d’essai pour toutes les conjectures concernant
les variétés rationnelles, conjectures dont on a quelques raisons d’espérer
quelles s’inserent dans un ensemble bien plus vaste, sortant du cadre des
varietés rationnelles.

Pour la commodité de I'exposé, disons que I'on s’est intéressé aux trois
themes suivants:

k-rationalité. Si X est une surface (variéte) rationnelle avec un k-point
non singulier, qu’est-ce qui empeéche X d’€tre k-rationnelle, ou du moins
k-stablement rationnelle (X x P} k-birationnel a P3), et y a-t-il une différence
entre ces deux notions (probleme de Zariski, mentionné par B. Segre en
1950)?

Principe de Hasse. Si k est un corps de nombres, décrire obstruction a
la validité du principe de Hasse.

Description des points rationnels. Si k est un corps de nombres, et
X(k) # (O, obtenir des parametrisations finies du type de Chitelet pour
d’autres classes de variétés. A defaut, décrire des relations d’équivalence sur
X(k) approchant la décomposition en classes de paramétrisation.
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Manin et Voskresenskii dégagérent le role important du module galoisien
Pic (X) (X variété rationnelle projective et lisse) dans I'étude de la k-rationalité
(stable). Ainsi, au moins en caractéristique zéro, le groupe H(G, Pic(X))
est un invariant k-birationnel qui est essentiellement équivalent a un autre
invariant, le groupe de Brauer-Grothendieck de X. Ces invariants permettent
souvent de reconnaitre quune k-variété rationnelle n’est pas k-rationnelle,
ce bien quelle posséde un point rationnel.

Swinnerton-Dyer donna deés 1962 des contre-exemples au principe de
Hasse pour les surfaces cubiques lisses, et d’autres suivirent pour d’autres
types de surfaces rationnelles. Manin (1970) mit de I'ordre dans ces contre-
exemples, en les interprétant au moyen du groupe de Brauer-Grothendieck.

Dans son livre sur les formes cubiques (1970), Manin donne aussi son
point de vue sur la paramétrisation des points rationnels des surfaces de
Chatelet. Il introduit d’'une part la notion de R-équivalence sur les points
(€tre liés par une chaine de courbes de genre zéro), d’autre part ’équivalence
de Brauer, via laccouplement naturel X(k) x BrX — Brk. Il se trouve
que pour les surfaces de Chatelet ces deux notions coincident, mais il n’en
est plus ainsi pour les surfaces de Chatelet généralisées.

En 1970, je passai une année a Cambridge (Angleterre) et P. Swinnerton-
Dyer me suggera de comprendre en profondeur les calculs assez mystérieux
de Chatelet, ce afin de généraliser les résultats a d’autres variétés. En 1974,
je pus ainsi interpréter une partie des calculs de Chatelet grace a lutili-
sation de torseurs sous des tores particuliers (ainsi le calcul fort instructif
mentionne a la fin de 3.2 peut étre interprété au moyen d’une généralisation
de la loi de réciprocite d’A. Weil).

En 1976, Sansuc et moi-mé€me, inspirés par les articles de Chatelet de
1954 et 1959 d’une part et par les travaux de Manin et Voskresenskii
d’autre part, établimes pour les points rationnels des tores algébriques
I’analogue du résultat de paramétrisation finie de Chatelet. Ce résultat peut
s'interpréter dans la perspective de la « descente » sur les points rationnels
d’une variété rationnelle X. Comme Chatelet, on utilise des torseurs sur X
sous des tores, plutét que le groupe de Brauer-Grothendieck (de tels torseurs
donnent une meilleure approximation de la R-equivalence sur X(k)). En 1984, -
Sansuc, Swinnerton-Dyer et moi-méme plimes compléter le programme de la
descente pour toutes les surfaces de Chatelet généralisées. Ainsi, si une telle
surface X posséde un k-point et si Pinvariant Pic(X) est « trivial », alors X
est stablement k-rationnelle. Comme d’autres invariants, non stables, per-
mettent parfois de montrer que X n’est pas k-rationnelle, ceci mena a une
réponse négative au probleme de Zariski, tant pour les surfaces sur Q
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(exemple: y?+3z2=x>—2) que pour les variétés de dimension 3 sur C
(résultat obtenu en collaboration avec Beauville). Par ailleurs, ’obstruction de
Manin au principe de Hasse (donnée par le groupe de Brauer-Grothendieck)
est ici la seule, et ceci permet de déterminer effectivement si une telle surface a
un point rationnel. Enfin, les points rationnels d’une telle surface peuvent
étre décrits au moyen d’un nombre fini de paramétrisations par des varietés
k-rationnelles.

Dans ses recherches, Francois Chitelet ne s’est jamais enlis¢ dans un
formalisme gratuit. Les idées qu’il a lancées sont encore fécondes aujourd’hui,
et "aimerais en conclusion redire combien elles m’ont marque.
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