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QUILLEN'S THEOREM ON BUILDINGS AND THE LOOPS

ON A SYMMETRIC SPACE

by Stephen A. Mitchell ])

Abstract

In the mid 70's Garland and Raghunathan, and (independently) Quillen
discovered that QG (G a compact Lie group) is homotopy equivalent to

an infinite dimensional flag variety, and that Bott's cell decomposition
of QG can then be obtained as a Bruhat or Schubert cell decomposition.

Quillens method applies also to the loops on a compact symmetric space M,
and involves identifying the path space of M with a certain Bruhat—Tits

building. The details never appeared. In this paper we develop a theory of

"topological" buildings and prove Quillen's theorem. We then show how

one can rederive the Bott—Samelson theorems on DM, and the real and

complex Bott periodicity theorems, from this point of view.

In the 1950's Bott, and Bott and Samelson, obtained a series of beautiful
results on the topology of loop spaces of compact symmetric spaces: the
Bott periodicity theorems [6], a cell structure (with various applications to
homology) [4] [7], and a description of the Pontrjagin ring [5]. All of
these theorems were proved using Morse theory. In the mid 70's another

very different approach emerged in the work of Garland and Raghunathan
[12] (who only consider the case of a compact Lie group) and
(independently) Quillen [30]. The new point of view forms a part of the theory
of loop groups: if G is a simply-connected compact Lie group, with
complexification Gc, the group LGC of maps S1 -» Gc can be regarded as

an infinite dimensional complex algebraic group. The based loops QG then

appear as a homogeneous space of LGC, analogous to a flag variety. If
M G/K is a symmetric space, DM is a real form of QG. The cell
structures of Bott and Samelson are obtained from a Bruhat decomposition
of LGC, and their results can be derived from the combinatorics of the
affine Weyl group. In addition, QM is the direct limit of finite dimensional
"Schubert varieties", and recently this point of view has led to some new

b Partially supported by a grant from the National Science Foundation.
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results on the homotopy type of QSU(n), QSU(n)/0{n), and QSU(2n)/Sp(n)

([9], [24], [26]).
There are two key ingredients. The first concerns the structure of the

group of "algebraic loops" LalgGc—i.e., the regular maps C* Gc (§ 3).

Here the basic idea goes back to Iwahori and Matsumoto [16], following a

suggestion of Bruhat. These authors show how to associate a Tits system
(§ 2) to any Chevalley group over a local field, so that the Weyl group
of the system is the affine Weyl group. Now if we write Gc for the group
of points of the algebraic group Gc over C[z, z-1], it is easy to see that
LaigGc Gc. Hence the results of [16] can be applied (at least after

completing with respect to the ideal (z)) and we obtain a Tits system on
LaigGc • The group P of regular maps C Gc is then a maximal parabolic
subgroup, and the homogeneous space Gc/P (which is a direct limit of projective
varieties) can be identified with QaîgG {/ e LalgGc: /(S1) G and f{\) 1}

("Iwasawa decomposition"). The axioms for a Tits system then yield a Bruhat
or Schubert cell decomposition of Gc/P, and hence a cell decomposition of
QaigG• The cells are indexed by Horn (S1, T), where T is a maximal torus.
After some further technical work, this idea can be generalized to QM: if
M G/K, where K Ga for some anti-complex involution a on Gc

preserving G, we can define an involution x an LalgGc by x/(z) a(/(z)).
The fixed group is a real form of Gc. Similarly, we replace QaigG by
(QalgG)x—the space of Z/2—equivariant loops—and the cell decomposition
of {QalgG)x is obtained in an analogous way (§ 5). Of course to apply any of
this to the original problem, we need the second ingredient: Let QaigM

(QaigG)\ and note that QM can be identified with (^G)T.

Theorem (Quillen). The inclusion QaigM — QM is a homotopy equivalence.

In the case M G this theorem has several completely different proofs

([12], [29], [30]); it can also be deduced from Bott's work and the

Bruhat decomposition [25]. The proof suggested by Quillen is particularly
beautiful, and applies to all compact symmetric spaces M. The idea is the

following, taking M G for simplicity: It is sufficient to produce a con-
tractible space E on which QaigG acts freely, with orbit space G. Quillen
observes that a plausible candidate for E is already at hand. To any
Tits system one can associate a certain simplicial complex (or space)

—the building—and when the Weyl group of the system is infinite, as

it is here, the building is contractible. In fact J is a certain quotient
space of LatgG/T x A, where A is a simplex of dimension equal to rank
G. It follows that the QatgG orbit space is a quotient of G/T x A. But it
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is a classical fact that G G/T x A/~ (§ 1), and on inspection one sees

that the two quotients are identical. In fact (this is also due to Quillen)

I has a very concrete description : it is the space of paths in G of the form

f{e2nit) exp tX, where / e QalgG and X e g. The action of QalgG on this space

i is obviously free, which completes the proof (§ 4).

I The purpose of this paper is to give a detailed exposition of Quillen's

I idea, with reasonably complete proofs, and to show how one can derive

the results of Bott and Samelson. (Along the way, we also give an axiomatic

treatment of topological Tits systems.) The paper is organized as follows:

In § 1 we establish most of our notation concerning Lie groups, symmetric

spaces, etc. ; and collect some preliminary results. The most important point
here is the classical description of M as a quotient of K x À, where À

is the Cartan simplex. The reader will probably prefer to skim through
this section first, and refer back to it later when necessary. The main
references are [13], [22], and [33]; a short introduction to real forms,
Satake diagrams, etc. can be found in [23].

In § 2 we discuss topological Tits systems (G, B, N, S) and their associated

buildings. Although the axioms for a Tits system may seem obscure at first
encounter, and lack the geometric appeal of Morse theory, it can not be

denied that they are remarkably simple. The structure theory of such systems
constitutes our main technical tool. However, in our context it is necessary
to take into account the topology the system. We define topological Tits
systems in a rather minimal way, and then state four additional axioms
that will be satisfied by all the Tits systems considered in this paper.
These axioms are fairly easy to verify in most cases, and suffice to establish
various desirable properties: For example, that the Bruhat decomposition of
a "flag space" G/P is a C VF-décomposition, with the closure relations on the
cells given by the Bruhat order on the Weyl group. Much of the treatment
here is inspired by Steinberg ([32]) and Kac and Peterson ([17], [18], [19]).
We then introduce the topological building 93G. It is a quotient space of
G/B x A—in fact, it is precisely the homotopy colimit of the diagram of
flag spaces G/Pj(IczS). We show how to adopt the standard proofs of the

Solomon-Tits theorem to the topological context. Thus is contractible
if W is infinite and is a certain suspended quotient of G/B otherwise.
As an example, we note that for the usual Tits system associated with
a real form of a semisimple complex Lie group, the building can be identified
with the "tangent cut locus" of the associated compact symmetric space.

In § 3 we briefly review some basic facts about algebraic loop groups.
(See for example [1], [27] and [29] for details). The most important fact

t
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is that LGC admits a suitable topological Tits system. The existence of the
Tits system is proved more generally for Kac-Moody groups by Kac and

Peterson [17], so we only sketch the proof.

In § 4 we prove Quillen's theorem on the building, in the case M G.

(We have separated this case from the general case in order to isolate the

main idea, which is fairly simple.)

In § 5 we redo the results of § 3, 4 for a general M. Again, many of
the more tedious technical results are only sketched. One key result is the
existence of a suitable Bruhat decomposition of the real form (LalgGc)x.

Presumably this follows from the general theory of algebraic groups, but we

have elected to give a direct proof that contains a result of some
independent interest. The point is that the involution x does not preserve the

Iwahori subgroup B (the "P" of the Tits system), so one can not simply
apply x to the B — B double cosets in Gc. However x does preserve a

certain parabolic Q (canonically associated to the original involution a),
and hence preserves the Q — Q double cosets. To analyze these, we show

more generally that for any flag variety Gc/Q or Gc/Q, the P-orbits (here

P, Q are any parabolics) are holomorphic vector bundles over (finite
dimensional) flag varieties of the Levi factor of P (which can be explicitly
determined). This fact is certainly well known, but does not seem to appear
in the literature. The details are banished to an appendix (§ 8). We also show

in this section how to deduce various results from [7] : the cell structure on

QM, the fact that these cells are all cycles mod 2 (or actual cycles, if M
is of "splitting rank"), and the "somewhat mysterious" connection [7]
between H^QG and when M is of maximal rank. (This connection
becomes transparent in the present context.)

In §6, we discuss six examples: SU(2n)/Sp{n\ SU(n)/SO{n\ SO{2n)/U(n\
Sp(n)/U(n), Sn and CP". Here, as elsewhere, we emphasize the way in which
information can be obtained directly from the Satake and Dynkin diagrams.

In § 7, we reprove the real and complex periodicity theorems. In effect,

we simply imitate Bott's original, beautiful proof, but with Morse theory
replaced by topological Tits systems. The idea is that for certain commutator

maps K/H Q.G/K, cp(K/H) is a "Schubert subvariety", so the range of
dimensions in which cp is an equivalence can be determined by merely
counting cells. But as an added twist, we show that if one only considers

the maps (p associated with the "miniscule roots" of M (these suffice for
Bott periodicity), then this range of dimensions is not only determined by
the root system (as Bott showed), but in fact can be read off directly,
in a rather amusing way, from the Dynkin diagram. Thus the Bott
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periodicity theorems can be proved by inspecting the Dynkin diagrams of

the classical symmetric spaces

A traditional difficulty encountered by writers on this subject is the

inordinate quantity of notation required: to the usual list of notations for

root systems, Coxeter groups, complex Lie groups, etc., we must add still

more notation for symmetric spaces, restricted root systems, loop groups, etc.

Some further remarks: (1) we generally use a tilda for various "loop"
analogues of classical objects, but this notation should be interpreted

with care. For example, it Gc is a reductive complex algebraic group,
Gc is the group of algebraic Gc-valued loops; on the other hand, if B

is a Borel subgroup of Gc, its analogue is the Iwahori subgroup B—but
B is not a Borel subgroup, and is not the group of B-valued algebraic

loops (see § 3). (2) in a similar vein, we generally use a subscript R to
denote the analogue for a real form (given a fixed involution a as above)
of a complex object. For example, GR is our real form of Gc: GR (Gc)a.

On the other hand BR, the analogue of B, is usually called a "minimal
parabolic". It is neither solvable nor connected in general, and does not
equal BG, but nevertheless is the correct analogue of B (from the point of
view of Tits systems). (3) Given a root system <ï> (affine or ordinary), we

frequently confuse, identify and otherwise comingle the following sets :

(a) the simple roots (a system of positive roots having been fixed), (b) the

simple reflections, (c) the nodes of the Dynkin diagram and (d) a set of
integers 1, 2, ••• 1 (or 0, 1, 2, ••• /) indexing all three of the above in a compatible
way.

A final word on the origin of this paper: Quillen's work is unpublished,
and, to the best of my knowledge, he never even circulated a manuscript.
1 first learned of the idea (of using the building) from a set of notes,
kindly sent to me by Richard Kane, of a single lecture delivered by Quillen
at MIT in July of 1975. Theorems 4.1, 4.2, 4.4 and 4.7 are stated there,
and it is asserted that the methods and results carry over to symmetric
spaces. The proofs of these theorems in the present paper are (for better
or for worse) my own. The Bruhat and Iwasawa decompositions for algebraic
loop groups (or at least their topological applications) are apparently due
to Quillen and (independently) Garland and Raghunathan, although in their
algebraic form these results go back to Iwahori and Matsumoto. The
treatment here is largely based on work of Kac and Peterson [17]. Another
approach is via the "Grassmanian model" representation of QaigG ; this too is
lue to Quillen. We will not consider the Grassmanian model (or its obvious
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analogue for symmetric spaces, but see [9] for an example); there is a very
thorough account of this approach in [29].

I would like to thank Suren Fernando for some very helpful conversations.

§ 1. Notation and Preliminaries

Except in § 2, G will always denote a compact connected Lie group of
rank /; usually we will assume also that G is simple and simply-connected.
Fix once and for all a maximal torus T in G, and let N denote the

normalizer NGT. The Weyl group W is N/T. Lie algebras are denoted

as usual by Gothic letter: g, t, etc. To each G we can associate a reductive

complex algebraic group Gc—the complexification of G—with Lie algebra

9c 9 ® C. It contains G as a maximal compact subgroup, and as the

fixed group of an anti-complex involution. In fact G -+ Gc defines an
equivalence of categories (compact Lie groups) (reductive complex algebraic
groups).

Gc has a Borel subgroup (maximal connected solvable subgroup) B,

unique up to conjugacy, which we can assume contains the Cartan subgroup
(maximal algebraic torus) Tc. There is a split extension U -» B -> Tc where

U is the unipotent radical of B. There is also an opposite Borel subgroup
B~ such that B n B~ Tc; it fits into a similar split extension U~ -> B~
— Tc. On the Lie algebra level we have gc tc 0 u © u~, with u © u~

being precisely the sum of the nontrivial eigenspaces for the adjoint action
of tc on gc. The corresponding eigenfunctions X : tc -> C map t into zR ;

as is customary we replace each X by a — X/2ni to obtain a set <D of
nontrivial R-valued linear functionals on t-the real roots. These form a

(reduced, crystallographic) root system in t*. The positive roots ®+ correspond
to u, the negative roots <X>~ to u~. A simple system of roots a1,..., az (here we

assume G is semisimple of rank I) is then uniquely determined as the set

of positive roots which are not decomposable as sums of positive roots. If we

assume G is simple, so that O is irreducible, there is a unique "highest
root" a0, which is characterized by the property that for every positive
root a, a0 + a is not a root. The corresponding eigenspace in u is precisely
the center of u. And, speaking of eigenspaces, let Xa denote the eigenspace

(or "root subalgebra") of gc associated to a e ®. For each a, the subalgebra
of gc generated by Xa and X_a is isomorphic to sl(2, C). The corresponding
subgroup, isomorphic to SL2C or PSL2C, is Gc a. Choosing generators
Ea for the Xa, we obtain a basis for gc, consisting of the £a(ae<I>) and

A, [£„, (ae<D+).
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The basis above can be chosen so that the antilinear map gc -> gc

defined by Ea -+ - £_a is a Lie algebra automorphism with fixed algebra g.

In particular, then, we have g t ® (©ae®+^a)> where 7a is spanned by

Ea - E_a and i(Ea + E_a). The Ya are "eigenspaces" for the adjoint action

of t on g. Each Ya generates a Lie algebra isomorphic to su(2). The

corresponding subgroups Ga, isomorphic to S 1/(2) or SO(3), are extremely

important; for example, they generate G (if G is semisimple). Note Ga is a

maximal compact subgroup of Gc a.
In t there are three lattices: the coroot lattice R, spanned by the

coroots av 2a/a • a (t is identified with t* via a PF-invariant inner

product), the integral lattice I Ker (exp: t-»T), and the coweight lattice
J {X g t: a(x) g Z V a g <X>}. We have R ^ I ^ J, with I/R n±G and

J/I C(G). If we think of R as a group of isometries (translation) of t,
then R is normalized by W ; the affine Weyl group W is the semidirect

product RW. Next, consider the Stiefel diagram, which consists of the

hyperplanes Pa n {X g t : a(x) n} (ocg®, wgZ). The connected components
of the complement of the diagram are the alcoves, and we have :

(1.1) Theorem, (a) W acts simply transitively on the alcoves; (b) W
is generated by the reflections in the walls of any fixed alcove.

Now let be the positive Weyl chamber: {X et: a(x) > OVocg® + }.
Assume (for convenience) that G is simple. Then as our standard alcove we
take sY+ {X ec£+ : a0(J*0 < 1}. The closure À of is an /-simplex—the
Cartan simplex; its walls are the hyperplanes ai 0(1 <z^/), a0 1. The
wall a0 1 will be called the outer wall Thus W is generated by the set
S S u {s0}> where s0 is reflection in the outer wall. For each subset
I of S the I-face Aj of A is defined by Aj {X g A : af(x) 0 if
ie /, i # 0, a0(x) 1 if 0 g /}. (Here S - {s0, -, 5Z} {0, 1, ••• /}). We let
À7 denote the interior of Af, so that A is the disjoint union of the
À7. The isotropy group in W of any X e Aj is precisely Wj (the subgroup
generated by I).

(1.2) Theorem. Suppose X, Y g A and gX Y for some a g W.
Then X Y and a g fT7, where I {seS:sX AT}.

The most important feature of A, for our purposes, is the following:

(1.3) Theorem. Every element of G is conjugate to exp X for some
X g A. If G is simply-connected, X is unique.

[The proof of this classical theorem is easily obtained from what we
have stated so far, together with the conjugacy of maximal tori and the
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fact that two elements of T conjugate in G are conjugate by an element
of Wl

The first part of (1.3) asserts that the map G/T x À A G given by
n(gT, X) g exp X g~x is surjective. Thus G is a quotient space G/T x A/~
for a certain equivalence relation If G is simply-connected, the second

part asserts that the equivalence relation is given by {gxT,X^) ~ (g2T,X2)
if and only if Xt X2 X (say), and g1 g2 mod CG exp X. Now
Cg exp X({Y g g: (exp X) • Y T}) is easily determined (we write g • X for
(Adg)(X)): Cg exp X (®aWeZf«) 0 t, and furthermore {oc g ® : a(X) g Z}
is generated by the simple roots it contains—provided that — a0) is counted
as a simple root. (Of course for X g à, a(x) g Z means a(x) 0, ± 1). In
other words, if X g Â7, the identity component of CG exp X is the (closed)

subgroup Gj generated by T and the Ga., i g I. We recall here that although
centralizers of tori are always connected, centralizers of elements need not be.

Fortunately, however, there is the following result.

(1.4) Theorem (Borel [2], Bott [unpublished]). If © is an automorphism

of a simply-connected compact Lie group G, the fixed group of © is

connected.

In particular centralizers are connected in this case, so CG exp X GI.
We summarize the preceeding discussion in the next theorem.

(1.5) Theorem. Let G be a simple, simply-connected compact Lie group,
regarded as a quotient space of G/T x À as above. Then the equivalence
relation on G/T x À is given by (gxT, X) ~ (g2T,X) if X e k1 and

g1 g2 mod Gj.

We turn next to symmetric spaces. Let a be an involution of a semi-

simple G with fixed group K, and let K' be any subgroup of K containing
the identity component. For our purposes a symmetric space is by definition
a space of the form G/K'. However we will consider exclusively simply-
connected symmetric spaces; in that case K' is necessarily connected. Lifting
a to an involution a of the universal cover G of G, we see that

G/K' G/K", where K" is the fixed group of a. Hence we may assume

without loss of generality that G itself is simply-connected, and in that case

the Borel-Bott theorem guarantees that K is connected. The induced
involution on g will also be denoted by a. We have g k © m, where m
is the (—l)-eigenspace of a. Let M exp m. Then:
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(1.6) Theorem. The map rj : G/K -> M given by r[(gk) — go(g x) is a

K-equivariant homeomorphism. (K acts on M by conjugation.)

From now on we identify G/K with M. Let tm be a maximal abelian

subspace of m (any two such are K-conjugate); we can assume tm c= t.

The torus Tm exp tm is a maximal torus of M (or of G/K). The relative

Weyl group WG,K is NKtJCKtm; as in the absolute case, it is a finite

group.
Now the involution a on g (resp. G) extends uniquely to an anti-

complex involution on gc (resp. Gc). Passing to fixed points, we obtain the

associated real forms GR (GC)CT (not to be confused with (Ga)c!) and

gR (gc)a. Gr is semisimple real Lie group, containing K as a maximal

compact, and will play an important role.

Up to conjugacy, we can assume that a is in "normal form": a preserves

tc, and commutes with the "compact" involution of gc (the involution with
fixed algebra g). With this assumption, we now consider the associated

relative root system. Since a is antilinear, its action on is given by

(ctA,) (x) X(ax). This action permutes the complex roots, and yields an
involution on the real roots ® : (aa) (x) — a(ax). Let ®0 denote the

set of roots which restrict to zero on tm; and let W0 denote the associated

Weyl group (note ®0 is spanned by the simple roots it contains; W0 is

the subgroup generated by the corresponding simple reflections). The relative

root system £ is the set of nonzero linear functionals ß on tm which are
restrictions of roots a e <X>. One can show that £ is indeed a root system,
although it is not necessarily reduced—i.e., there may be roots ß such that
2ß is also a root. The following result is due to Satake [31] :

(1.7) Theorem. There is a base B (simple system of roots) for <P

such that if ® + is the corresponding set of positive roots, a preserves
® +

— ®0. Furthermore any such base satisfies (a) B n <D0 is a base for
#o and (b) For each aeB — ®0, there is a unique a' e B — ®0
such that aa a' mod Z<X>.

Using this theorem, the Satake diagram of G/K can be described as
follows. Start with the Dynkin diagram of G; its nodes are labelled by the
simple roots of <h (or by the set S). Color the nodes belonging to ®0
black and color the remaining nodes white. By part (b) there is an
involution (possibly trivial) on the set of white nodes; this is indicated by
drawing double arrows between the nodes of each nontrivial orbit. Six
examples are given in §6; see [13], pp. 532-4 for a list of all possible
Satake diagrams. To capture all of the structure of G/K another diagram
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is needed, which we will call the Dynkin Diagram of G/K. First define
the multiplicity mß of a root ß in S to be the number of roots in <D

which restrict to ß. Then the Dynkin diagram of G/K is the Dynkin
diagram of X with the nodes labelled by their multiplicities; if ß is a

simple root such that 2ß is also a root, the ß-node is to be labelled by
(mß, m2ß). Again, see § 6 for examples; for the moment we just mention an
extreme case : If G/K has maximal rank—i.e. tm t—then GR is the so-called

split real form of Gc. The nodes of the Satake diagram are then all white,
with trivial involution, <D X and ma 1 for all a. For example, take
G SU(n\ a(A) Ä, K SO(n) and GR SL(n, R). (The opposite extreme
—all nodes on the Satake diagram black—corresponds to the compact
involution on Gc (so a |

G 1), and will be ignored.)

For our purposes it is necessary to consider the extended Satake and

Dynkin diagrams. We recall here that the extended Dynkin diagram of an
irreducible (reduced) root system is obtained formally by considering — a0

as a simple root and adjoining a corresponding node to the ordinary
Dynkin diagram. (For us this definition is motivated by loop groups (§ 3),

but it has many other uses—for example, in the Borel-de Siebenthal
classification of maximal rank subgroups of G [3]). Now in view of (1.7)

it is clear that <j0 restricts to the highest root of X, and so in particular
restricts non-trivially. Hence the extended Satake diagram is obtained by
coloring the — a0)-node white (and leaving it fixed under the involution,
for reasons which should become clear later). The extended Dynkin diagram
for G/K is obtained from the ordinary one by adjoining — a0 and labelling
it by its multiplicity (2a0 is never a root).

Next, we will need the analogues of the subgroups Gc a and Ga in the

real form GR. Let ß be a simple root in X, and let Jß be the subset of S

determined as follows (cf. [22], pp. 135-36): In the Satake diagram form the

subdiagram consisting of the black nodes and the set of white nodes that
correspond to ß under restriction (there are either one or two such white

nodes). Then, in this subdiagram, take the path component that contains the

white node(s) (even when there are two white nodes, they lie in one

component). The nodes of the diagram obtained define the set /ß of simple
roots in <F. The subgroup G/ß of G is preserved by a, as is its commutator
subgroup Gjp, and the fixed group Kß — (Gjß)CT is the desired analogue of
Ga. Similarly, GR ß

is the cr-fixed group in (Gc)/ß. Note that we have

selected a sub—Satake diagram corresponding to the rank one symmetric

space GJß/Kß.
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Examples. In the split case, identifying <X> with E, we have G/p

Gß SU(2) and Kß SO(2) for all ß. For the usual involution on

SU(2n) with K Sp(n), the subdiagrams obtained all have the form

# o • SO GIp 51/(4) and Kß Sp(2) for all ß (§ 6.1).

If ß0 is the highest root of E, Kßo, (G0)ßo are similarly defined, using the

extended Satake diagram.
Lattices are defined exactly as before, using tm, Tm and E in place of

if T, <D. The coroot, integral, and coweight lattices for M will be denoted

Rm, Im, Jm, respectively. In fact, in each case the lattice for M is obtained

by simply intersecting the corresponding lattice for G (in t) with tm. The

definition of the affine Weyl group WGtK, the Stiefel diagram, alcoves,

Cartan simplex Am etc. are exactly as above—indeed these depend only
on the root system E. In fact Am A n tm. Theorems (1.3) and (1.5) also

go through in the following form, for example.

(1.8) Theorem. Let G be a simple compact Lie group with involution a
and fixed group K as above. Then every element of M is K-conjugate
to an element of the form exp I,IeAm. If G/K is simply-connected,

X is unique.

To state the analogue of (1.5), we need to determine CK exp X for
Xe(ÂJ,. Here / is a subset of SR—the set of simple roots of E. Clearly
CK exp X (CG exp)CT. It follows easily that CK exp X (Gr)a, where T
is obtained from I in the obvious way: In the extended Satake diagram,
L corresponds to the black nodes together with all the white nodes that
"restrict" to the nodes of I. (For example, if I is the empty set—i.e.,
X lies in the interior of the Cartan simplex Am — T corresponds to the
black nodes and CK exp X (Gr)a CKtm). Let Kj (Gr)CT.

(1.9) Theorem. Let G, a, K, be as in (1.8), with G/K M simply-
connected, and regard M as a quotient space of KjCKtm x Am via the map
(,kCKTm, X) k exp X k_1. Then the equivalence relation on K/CKtm x Am
is given by (k1, X) ~ (k2, X) if X e (ÀJ7 and fcx k2 mod Kj.

The final volley in our barrage of notation has to do with Weyl groups.
If (W, S) is any Coxeter system, and I is a subset of S, Wj is the
subcoxeter system generated by I. Each coset wWj has a unique element X
of minimal length, and l(xy) l(x) + l(y) for all y e Wj_ (l(w) is the length
of w as a word in the elements of S). We let W1 denote the set of such
minimal length elements. We also recall that W1 has a partial order—the
Bruhat order—defined by setting x ^ y if y has a reduced decomposition
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y si sk(sieS) an<i x has a reduced decomposition obtained by deleting
some subset of the sf's occuring in y. (For a very nice account of these

related matters, see [14]). If W is finite, W has a unique element w0

of maximal length, we define the length of W to be l(w0).

§ 2. Topological Buildings

A Tits system (G,B,N,S) consists of a group G, subgroups B and N,
and a set S, which satisfy the following axioms :

(2.1) B n N is normal in N, and 5 is a set of involutions generating
~ W N/B n N,

(2.2) B and A generate G,

(2.3) If s e S, sBs ^ b,

(2.4) if s e S, w e W, then s£w ^ BwB u BswB.

(The use of expressions such as sBw is a standard abuse of notation).

Example. Let G be a reductive algebraic group over an algebraically
closed field (e.g., GL(n, C)), let B be a Borel subgroup (e.g. upper triangular
matrices), and let N be the normalizer of a maximal torus (that lies in B).

This data determines a set S of simple reflections generating the Weyl

group W (e.g., the usual generators s1,..., sn _ x of SJ. Then one of the main
results in the structure theory of reductive groups is that (G, £, N, S) is a

Tits system (see for example [15]).

Throughout this paper we will assume that the set S is finite; its

cardinality I is the rank of the system.
We next list some of the important properties of a Tits system.

(2.5) (Bruhat Decomposition) G =11weWBwB (disjoint union),

(2.6) (W, S) is a Coxeter system.

A subgroup P of G is parabolic if it contains a conjugate of B. In
particular if I £ S, the subgroup Pj generated by B and I is parabolic.

(2.7) (a) The parabolic subgroups containing B are precisely the P7, / c S.

No two of these are conjugate; in particular there are exactly 2l such

subgroups, which form a lattice isomorphic to the lattice of subsets of S.

(b) Pj BWjB

(c) Every parabolic P is self-normalizing : NGP P.
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(2.8) (Bruhat decomposition, general version) G =ULweWAWfWj PiwPj
(disjoint union).

The next result, which we will refer to as the Steinberg Lemma, is somewhat

technical; however it is not hard to prove and is extremely useful. It is a

mild generalization of Theorem 15 of [32] and Proposition 3.1 of [19].

(2.9) Let I ç S and suppose w is the unique element of minimal length

of wWj. Suppose w Wi w^ where l(w) l(wx) + + l(wk). Then

(a) If Yi is any subset of BwtB such that Yt -> BwtB/B is bijective

(resp. surjective) (l^i^/c), then Yx x Y2 x Yh-^BwPI/PI is bijective

(resp. surjective).

(b) Suppose Wj- g S, 1 < i ^ k i.e., wx wk is a reduced decomposition

of w). Let Zi5 1 ^ i ^ k, be any subset containing 1 of PWi

such that Zt PWJB is surjective. Then the image of Zx x ••• Zk -> G/Pj
isllx^w BxPj/Pj.

The maps in (a), (b) are the obvious multiplication/projection maps.
Part b refers to the Bruhat order on W1.

(2.10) Remark. The Tits system of a reductive algebraic group has several

additional features: B HU, where H is a maximal torus and U is a

normal unipotent subgroup, U in turn is described in terms of its root
subgroups, and there is an "opposite" Borel subgroup B~ such that
B n B~ H. This additional structure can also be axiomatized in an

elegant way, leading to the "refined" Tits system of Kac and Peterson [19].
One then obtains, for example, the Birkhoff decomposition G =HwewB wB
as a consequence of the axioms.

We now define a topological Tits system to be a Tits system such that G

is a topological group, B and N are closed subgroups, and W is discrete
(i.e. NnB is an open subgroup of N). We will usually also assume (for
reasons which will be apparent shortly) :

(2.11) Axiom. If I is a proper subset of S, Wj is finite.

This axiom is satisfied if W is an irreducible affine Weyl group, or finite.
To get any interesting results some further axiom seems necessary. One
direction is considered in [11], where the groups in question are algebraic
groups over local fields, with the valuation topology. Here, with loop groups
in mind, the following axiom seems efficient :

(2.12) Axiom. For each se S there is a subset As of Ps such that
(a) ASB PS9 (b) As is compact and contains 1, and (c) As As n BsB.
This axiom is motivated by Steinberg's approach [32].
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(2.13) Proposition. Let (G, B, N, S) be a topological Tits system satisfying
(2.12). Then

(a) BwB =JJLx^wBxB(wgW). More generally if I < S, and wg W1,

BwPj =]Ax^wBxPj (here xgW1

(b) B-orbits in G/Pj are locally closed,

(c) If W satisfies (2.11 parabolic subgroups are closed.

Proof. First we show Ps BsB. Since Ps — ASB, with As compact and

B closed, Ps is closed, so Ps ^ BsB. But also B c= Ps — ASB c: BsB, which

proves our claim. Part (a) now follows easily from the Steinberg lemma :

Let Mw =LL, wBxPIy and let w s1-sk be a reduced decomposition.

Then M, A1- AkP, and hence is closed. Next, suppose x ^ w; we must

show BxB s£ BwB. It is enough to consider the case when X has a reduced

decomposition x s1 — s; ••• sk (omit s;). Then

BxPj A \ — A'i-i A'i+1 —A'kP,sS BwP,

(since led.,), where A\AtnBs,B. This proves (a). Part (b) is immediate

since the complement of BwPk in its closure is a finite union of sets

of the form Mx, hence is closed. Since P, BW,B. (c) is also immediate

from (a) if W, is finite.

From now on we will assume 2.11 and 2.12. The homogeneous spaces

G/Pj will be called flag spaces. The B-orbits Ew BwPj/Pj are Schubert

strata and the~ compact subspaces Ew are Schubert subspaces.

We next consider the building (%G associated to a topological Tits system
(G, B, N, S). (The notation is ambiguous—indeed in the case of loop groups,
G will support two natural but totally different Tits system. Fiowever the

system we have in mind will be clear from the context.) In the discrete

case, is usually defined as the following simplicial complex. The vertices

are the maximal (proper) parabolics, and Px — Pk span a simplex if
k

P|. i Pt contains a conjugate of B. In general it is convenient to reinterpret

this definition as follows: first of all, by definition every parabolic P is

conjugate to a unique P7; we say that P has type /. Thus the maximal
parabolics are the parabolics of type [s], where [5] S — {5}. More
generally the /c-simplices correspond to the parabolics of type /, where
I / I l — k — L Thus the simplices all have dimension ^ f — 1, with the
I — 1 simplices corresponding to the conjugates of B. Furthermore, in view
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of 2.7 (c), the set of parabolics of type I is canonically identified with

G/Pj — xPj corresponding to xPjX 1. One can easily check that with this

interpretation, a simplex xPj is a face of a simplex yPj if and only if

I ZD J and xPI yP/. In particular, every simplex is a face of some I — 1

simplex. Hence, as a set, BG can be identified with G/B x A/~, where A

is the l-l simplex with vertex set S, and (g^, XJ ~ (g2B, X2) if

X1 X I2,IeAj, and g.Pj g2Pj. (Here A, is the face of A

corresponding to I < S.) We will therefore define the building 0$G associated to the

topological Tits system (G, B, N, S) to be G/B x A modulo this equivalence

relation, with the quotient topology.

Remark. Another way of expressing this is as follows: Let C be the

category defined by the poset of proper subsets of S (including the empty set).

We have a functor from C to topological spaces given by /1—> G/Pj •

Then 0$G is precisely the homotopy colimit of this diagram of spaces, in

the sense of [8], p. 327 ff.

(2.14) Proposition. The equivalence relation on G/B x A1 1 is generated

by the relations (g^B, X) ~ (g2B, X) if X lies on the wall As and

9iPs 92 ps-

Proof. In the usual language, (2.14) is the assertion that any two chambers

are linked by a "gallery". (See e.g. [11], appendix.) Since the action of G

on G/B induces a well defined action on 0$G, we are reduced to showing
that if (B, X) - (gB, X)—i.e. XeAj and g e Pj—then (.B, X) and (gB, X)
are linked by a sequence of relations of the stated type. But gB bwB

with w g Wj ; hence if w s1 — sk is a reduced decomposition, the elements

(£, X), (bSiB, X), (bs1s2B, X),... (bwB, X) provide the desired sequence.

Note that the set A is a fundamental domain for the action of G on
0$G. On the other hand, it is easy to check that the closed subspace 0$w

consisting of the pairs (wB, X), w e W, is a fundamental domain for the
B action. (The point is that if bw^j w2P/5 then nqPj w2Pj, by the
Bruhat decomposition.) This space 0ßw, which we will call the foundation
of the building, is a simplicial complex since W is discrete. Since it will turn
out that 0$G is in a sense a "thickening" of the foundation, the following well
known description of 03w may be of interest.
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(2.15) Proposition. Suppose <P is an irreducible root system in the

Euclidean space V. Then

(a) If W is the affine Weyl group associated to <D, then is

isomorphic as a simplicial W-complex to V (triangulated by the hyperplanes

of d>).

(b) If W is the Weyl group of is isomorphic as simplicial
W-complex to the unit sphere of V, triangulated by the Weyl chambers.

More precisely, can be identified with the W orbit of the outer wall

of the Cartan simplex.

Proof. For (a), map W x À V by identifying A with the Cartan

simplex in V and using the action map. Then (p is onto (1.1) and furthermore

cp(wl5x) (p(w2,X2) if and only if X1 X X2, X e Aj, and

wI w2 modulo the isotropy group of X. But this isotropy group is

precisely Wj (1.2), so cp factors through the desired isomorphism <%w V.

The proof of (b) is similar.

We now come to the main result of this section. Filter G/B by
Fk(G/B) =H,(W)^EW. Similarly, 38 G is filtered by Fk(ßG) Fk(G/B) x A/~.

(2.16) Theorem. Let (G, B, N, S) be a topological Tits system which either
is discrete or satisfies (2.11) and (2.12). Assume also that the inclusions

FiJ(Bg) œ Fk + i(BG) are cofibrations. Then

(a) If W is infinite, PßG is contractible.

(b) If W is finite of length r, is homotopy equivalent to the

(I—1) st suspension S1'1 A (Fr(G/B))/Fr- fG/B)).

Remark. If G is discrete, Fk&G is a subcomplex of the simplicial
complex G, so the cofibration hypothesis is automatically satisfied. Furthermore

if W is finite the smash product in (b) is just a wedge of | FrG/B
— Fr_xG/B I (/— l)-spheres. This case is due to Solomon and Tits; cf. [11].

Proof of (2.16). Let Xk denote Fk^G/Fk_1 <%G, and let X'k =* Fk(G/B)/
Fk_1(G/B). Then we will show

(2.17) If k is less than the length of W, Xk is contractible. If k r
length of W, Xk is homeomorphic to (Fr(G/B)/Fr_fG/B) AS1'1).

If W is infinite, it follows that Fk (%G is contractible for all k, and hence

G is contractible. If W is finite, part (b) of the theorem is also immediate.

To prove 2.17, first consider the quotient map n: Fk(G/B) x A -> Xk.
In fact 7i is merely collapsing a subspace to a point :
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(2.18) Let A, (b.w^X,), A2 (b2w2B,X2). If iiAx) ri(A2\ then

either A1 A2 or tc^) « 7z(A2) * (* is the basepoint Fk_^G).

For suppose ti^) ^ *, and Xx Â7. Then /(wj k and vtq e IF7. This

forces X2 and vtq w2 mod PF7; hence wx w2 since l(w2) < k

by assumption. Then b{wxPj b2w1PI. But whenever w e IF7,

b2wPj implies bxwB b2wB (easy exercise).

It now follows that Xk V/(w)=/c2fwl where Xw is the image of Ew x Ä

in Xk, and to prove (2.17) we need only consider a fixed Xw. Let

X'w ËJ(ÉW-EW), and let A' be the subcomplex of A consisting of the

walls As such that l(ws) < l(w). Then (2.18) implies:

(2.19) Xw X^w A (A/A').
For Xw is Ew x A modulo the subspace of points which are equivalent

(in 0&G) to a point of lower filtration, namely, Éw x A' u Ëw — Ew x A.

It remains to identify A;. Since F0^G A is contractible, we may assume

ic ^ 1 ; then A' is nonempty. If k < l(W), then there is at least one

se S such that Z(ws) > Z(w); hence A' is not the entire boundary of A

and A/A' is contractible. If k l(W), then w is unique, A' boundary of
A, and A/A' Si_1. This completes the proof of (2.17), and of the

theorem.

Remark. Our proof of Theorem 2.16 is an adaptation of the standard

(discrete) proof to the topological setting. Much of the proof depends only
on the Weyl group IF, and indeed shows e.g. for IF infinite that the

foundation of the building is contractible. In fact the deformation of
Fk{^w) into Fk^1(^w) has the property that the isotropy group in B of a

point X in is an increasing function of time, and hence extends

uniquely to a B-equivariant deformation of Fk(BG). In the discrete case this
extension is automatically continuous, and shows that Theorem (2.16) holds

B-equivariantly. (This was observed, (not for the first time) in [21], and has

an interesting application concerning the Steinberg representation of a finite
Chevalley group.) However this proof does not work in the topological
case; simple counterexamples show that the extension will be discontinuous.

In many cases the Bruhat decomposition of G/P is in fact a CW
decomposition. The following axioms are convenient in this regard :

(2.20) Axiom. For each s e S, the projection Ps -> PJB has a local section.

(2.21) Axiom. For each s e S, PJB is homeomorphic to a sphere of positive
dimension.

We then have :
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(2.22) Theorem. Let (G, B, N, S) be a topological Tits system satisfying
axioms 2.11, 2.20 and 2.21. Let P Pj be a parabolic subgroup, I ^ S,

and give G/P the compactly generated topology. Then

(a) Axiom 2.12 is satisfied.

(b) The Bruhat decomposition of G/P is a CW decomposition, and the

closure relations on the cells are given by the Bruhat order on W1.

(c) The building &G satisfies the cofibration condition of Theorem 2.16.

Proof. By assumption there are maps Dm(s) ^ PJB such that (pJ1(B)
dDm{s) and Dm{s)/dDm{s) PJB is a homeomorphism. Furthermore cps

lifts to a map (ps:Dm(s) Ps with 1 g (ps(dDm(s)). Thus, in Axiom (2.12) we

may take As Js(Z)m(s)), proving (a). Since P is closed (2.13c), G/P is a

Hausdorff space. If w e W1 has reduced decomposition w sx — sk, the

Steinberg lemma (2.9) shows that the multiplication map Dm{Sl) x ••• x Dm(Sk)

Ew (using cps.) is a characteristic map for the cell Ew. The boundary
of each cell is a finite union of cells of lower dimension by 2.13a, and

G/P has the weak topology by assumption. The closure relations also follow
from (2.13). This proves (b). For (c) we observe that (%G (with the
compactly generated topology) is itself a CW-complex, and the filtrations
Fk^G are subcomplexes: Indeed if we regard G as a quotient space of

S(G/Pj x Aj), it is clear that there is one cell for each I < S and

w eW1.

If G, Pj are as in the above theorem, and w g W1 has reduced
decomposition w sl — sk, let n(w) nisj + — + n(sk). Thus n(w) dim Ew and

so in particular is independent of the choice of reduced decomposition. Now
whenever a space has a locally finite cell decomposition, we have a cell

series afi, where at is the number of cells of dimension i. We then have :

(2.23) Corollary. G/Pj admits a CW—decomposition with cell series

Y tn{w) n2-JweW1 ' L"1

Note also :

(2.24) Corollary. If W is finite with maximal length element w0, &G
is a sphere of dimension n(w0) + 1—1.

We conclude this section with two "classical" examples. Let G be a

semisimple compact Lie group and consider the Tits system (G, B, N, S),

where B is a Borel subgroup, etc. First we claim that this is a topological
Tits system satisfying all four of our axioms. Since W is finite, (2.11) is
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trivially satisfied. In (2.12) we can take As to be the "little )" (or

PSU(2))Gs PshasIwasawa decomposition PS GSB). In any case there is

a commutative diagram

Gs Ps

i 1

CP1 - GJGS n T PJB

which proves (2.20), (2.21), and hence (2.12) simultaneously. The Bruhat

decomposition of Gq/P^Pj parabolic, is then the classical Schubert cell

decomposition of the flag variety Gc/P/. We have n(s) 2 for all s, so

n(w) 21 (w) for all weW1. In particular the associated building is

a sphere of dimension 2Z(w0) + 1-1 (since l(w)0 is the number of positive

roots, this is exactly dim G — 1).

The second example (which is a generalization of the first) involves

symmetric spaces G/K and the associated semisimple real Lie group GR

as in § 1. Thus GR is the fixed group of the involution a on Gc. Now a
need not preserve the Borel subgroup B of Gc, but it does preserve the

parabolic Q associated to the black nodes of the Satake diagram. We will
write BR,NR,WR, Sr for Qf NKtm, WG/K, SGIK, respectively.

(2.25) Theorem. (Gr, Br, Nr, Sr) is a topological Tits system satisfying
the four axioms.

A proof that this is a Tits system can be found in [33]. The parabolic
subgroups of Gr are related in an obvious way to those of Gc: Given

/ c 5r, let T be the corresponding set in S (see § 1). We denote by
the parabolic in GR generated by BR and I. Then (9j (iY)°. (*R

is usually called a "minimal parabolic", but this terminology conflicts with
our use of the term. From the point of view of Tits systems, it is precisely
analogous to the Borel subgroup of Gc—although in general it is neither
solvable nor connected.) The rest of the theorem is also easily deduced
from [33] ; the details will be omitted, but see § 5. The main point is that
for the minimal parabolics (9t, (9JBR is a sphere of dimension n{.

As for the building, one can deduce from (2.24) that it is a sphere whose
dimension is dim G/K — 1. However it is an interesting fact, that does not
seem to appear in the literature, that the building can be canonically
identified with the "tangent cut locus" of G/K: first recall (cf. [10], [20])
«hat if M is a compact Riemannian manifold and p is a fixed point of M, a point
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x is a cut point (with respect to p) if there is a geodesic from p to x
that minimizes arc length up to x but no further. The cut locus is the set

of cut points. Similarly a vector X in the tangent space Tp is a tangent
cut point if exppX is a cut point along the geodesic oxpftX). The tangent
cut locus is the set of all such points in Tp, and is homeomorphic to the
unit sphere in Tp. When M G/K we take p — 1.

(2.26) Theorem. Let G/K be a simply-connected symmetric space, with G

simple. Then the tangent cut locus is precisely the K-orbit in m of the outer
wall of the Cartan simplex Am. It is therefore canonically identified with the

topological building of the associated real form GR.

As usual, the assumption G simple is just for convenience. We sketch
the proof: the first assertion is a fairly easy consequence of Theorem (1.8),

and is left to the reader. Now consider the building &Gr- It *s a quotient
space of GR/BR x à0 K/CKtm x A0, where A0 is a simplex of dimension
(rank G/K)-1; we take A0 to be the outer wall of Am. For each

I ^ SG/K, let À7 temporarily denote the corresponding face of A0; i.e.

{X e A0 : a,(x) ~ 0 V i e I}. Then the K-orbit of A0 in m, KA0, is also a

quotient of K/CKtm x A0. The relations are (/qX) ~ (k2X) if X e kI and

k1 k2 mod Kj. But Kj K n (9j, so these relations are identical to the

ones that define the building.

§ 3. Loop Groups

Let LG, LGC denote the free loop spaces. Let Gc denote the group
of loops which are restrictions of regular maps C* -> Gc, and let LalgG

LalgGc n LG. Thus if we fix an embedding Gc c= GL(n, C), LalgG consists
of the loops / in LG admitting a finite Laurent expansion f(z)
whereas LalgGc consists of the loops / in LGC such that both / and

/-1 admit finite Laurent expansions. We will also write Gc for LalgGc.
In fact Gc is the group of points over C[z, z_1] of the algebraic group
Gc. Its Lie algebra is the loop algebra gc of regular maps C* -> gc. The

integer m in the above Laurent expansion defines a filtration of Gc by
finite dimensional subspaces; we give Gc the corresponding weak topology.

Let P denote the subgroup of Gc consisting of regular maps C -> Gc

(i.e. maps with nonnegative Laurent expansion, or GC[z]), and let B denote
the Iwahori subgroup: {/ e P: /(0) e B~}. Finally, let N LalgNc, and recall
that W can be regarded as a "subgroup" of Gc, since R < Hom()S1, T)

^ LalgT. More precisely, we have N/Tc W, and W c W.
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The affine root system > is the set Z x O. It can be thought of as a

set of affine linear functionals on t, but for our purposes it is just a device

for encoding combinatorial information about the affine Weyl group and

Gc. In particular, to each (n, ot)eO we associate a root subalgebra XHia

of gc consisting of the regular maps C* Xa homogeneous of degree n.

These subalgebras are one—dimensional, and are precisely the nontrivial

eigenspaces of the following Tl + 1 action: The constant loops Tl act in the

obvious way, and the extra S1 factor acts by rotating the loops. We also

have root subgroups U(n> a) exp Xn a < Gc. One can easily check that W

(acting by left conjugation) permutes the root subgroups. The resulting action

of W on 5> is given by (wA) • (n, a) (n + a(A), wa) for X g horn (51, T),w e W.

The various additional structures associated with ordinary root systems can
be defined here as well. The positive roots Ô+ are the (n, a) with n ^ 1

or n 0 and a < 0 (note these correspond to the Iwahori subgroup B);
the remaining roots are negative. As in the finite case, the length of an
element a in IT is equal to the number of positive roots taken to negative
roots by a (in particular this latter number is finite, as is clear anyway
from the above formula for the W action). The simple affine roots are
defined as the set of elements of Ô+ which are indecomposable with respect to
addition: (m, a) + (n, ß) (m + n, a+ ß) (if a+ ß is a root). Hence the simple
roots are (0, —a), ••• (0, — az) and (1, a0).

To each root (n, a), we can also associate a "little 5L2" subgroup
generated by Un>a and L/_n _a. In particular GC i is the subgroup
corresponding to the ith simple affine root, 0 ^ i ^ /. Thus Gc i Gc t- if i # 0,
and Gc o corresponds to (1, a0). For example, if G 51/(2), Gc o is the

subgroup of matrices ^ with ad - be 1. We let Gt GC i n LG.

Again Gt G, if i # 0. Note that for all i, evaluation at z 1 gives an
isomorphism Gi X G; 51/(2).

(3.1) Theorem. Assume G is simply-connected. Then (GC,B,N,S) is a
topological Tits system satisfying the four axioms o/§ 2.

Proof That (Gc,ß, N, S) is a Tits system in the ordinary sense is
essentially due to Iwahori and Matsumoto []16j. (They work over a complete
local field K ; here we take K to be the field of infinite Laurent series
bounded below. It is not hard to get from the Chevalley group GK to
Gqz, z-1] Gc.) See also Kac and Peterson [17].

Clearly B and N are closed subgroups and W is discrete. For Axiom
(2.11) we need to show that if W is an irreducible affine Weyl group,



144 S. A. MITCHELL

and I is a proper subset of S, then Wj is finite. This is obvious since

the elements of I have a common fixed point (i.e. the intersection of the

corresponding reflection hyperplanes is nonempty). In Axiom (2.12) we take
As Gs. We have GSB GcSB B UssB Ps. In particular PJB
— GJ(GsnB) SU{2)/T CP1, which also proves Axioms (2.20) and

(2.2i). n

(3.2) Corollary. £laigG is a CW-complex with cells of even dimension,
indexed by Horn (S1, T). The Poincaré series for its integral homology is

is the minimal length accuring in XW.

Identifying Horn (S1, T) with Ws, the closure relations on the cells are given

by the Bruhat order on Ws.

Remark. An explicit formula for l(k) is given in [16], Prop. 1.25:

fa) - I {a > 0: a (X)>0} I.

We will also need the "Iwasawa decomposition" (see [17], [27], [29]):

(3.3) Theorem. Gc Q.aigG x P.

Remark. Note that (3.3) shows that the associated building, which we will
be denoted simply by &G, is a quotient of LalgG/T x A. The equivalence
relation is then {fxT, X) ~ (/2T, X) if X e Â7 and fi f2 mod LG n Pj.

§ 4. Quillen's Theorem for Loop Groups

In this section we will give Quillen's proof of the following theorem.

(4.1) Theorem. Let G be a compact Lie group. Then the inclusion

LlalgG -> LlG is a homotopy equivalence.

If G is simply connected, let denote the topological building associated

to the algebraic loop group LalgGc as in § 2.

(4.2) Theorem (Quillen). ÇlaigG acts freely on ^G, with orbit space G.

Proof of (4.1 It is easy to reduce to the case when G is simply
connected. Since BG is contractible by Theorem 2.16, we conclude at once

from Theorem (4.2) that £laigG QG is a weak equivalence. Since both

spaces have the homotopy type of a CIT-complex, the map is in fact a

homotopy equivalence.
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Since G is a product of simple groups (as is Gc), it is very easy to
reduce to the case when G is simple. For the rest of this section, then,

we assume G is simple and simply-connected, of rank I.

To prove 4.2, we introduce Quillen's space of special paths SPG: this
is the space of all paths [0, 1] G of the form f(e2nit) exp tX, where

/ e £laigG and leg. SP G is topologized as a quotient of 0.algG x g. Note
that LalgG acts on SP

G by h • (/ exp tX) hf exp tXh(l)~ h The following key
lemma, whose proof is deferred, also helps to explain the significance of the

parabolic subgroups P7.

(4.3) Lemma. Suppose X e Âj, then the isotropy group of exp tX is

LaigG n Pj

(4.4) Theorem (Quillen). SPG is LalgG-equivariantly homeomorphic to the

building SPG.

Proof. The action map cp : LalgG x A -> SPG given by

f exP txf^y1
is surjective by Theorem 1.1. If cp(fl9Xx) cp(f2,X2), then (evaluating at
t= 1) exp X1 and exp X2 are conjugate in G, so X1 X2 by Theorem 1.3.

We then have (y(f1, X) cp(/2, X) if and only if f1 — f2 mod the isotropy
group of exp tX. Hence, by (4.3), cp factors through the desired homeo-
morphism G -a SPG.

RemarkHere we have used the Iwasawa decomposition (3.3) to identify
®G - (Gc/B x A)/- with (.LalgG/T x A)/-.
(4.5) Lemma. LalgG n P/ is generated by T and the subgroups Gt,ie /.

Proof We have P, - BWIB. By the Steinberg lemma (2.9), each
BwB(weWj) has the form XB, where X is a product of the Gt. Since
LaigG n XB XT, the lemma follows.

Proof of 4.2. The action of ClaigG on SPG is clearly free. By (4.4), the
same is true for @G. Now consider the orbit space 0&G/QalgG. Since

- (LalgG/T x A)/~ (LlalgG xG/Tx A)/ ^, the orbit space is a quotient of
G/T x A. The equivalence relation is given by (giT, X) - (g2T, X) iï X e Àz
and g2 fglP with f eQalgG, pePj. In fact peLGnP,. Now let
Gj e(LGnPj), where e is evaluation at z 1. Then (g{T, X) - (g2T, X)
if and only if g1 g2 mod Gj. For if g2 f g1 p as above, then
Gi e(LaigGnPj), where e is evaluation at z 1. Then {gtT, X) - (g2T, X).
if and only if g1 g2modGj. For if g2 / glP as above, then
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92 f 9iP0)> and conversely if g2 g1p( 1), then g2 f g1p, where

/ — 92 P1 9 ï1 But by (4.5), Gj Gz (see § 1). In other words, the
equivalence relation here coincides with the classical relation of Theorem 1.5,

which has quotient G.

Proof of 4.3. Fix X e Aj. We first show that LalgG n Pj fixes exp tX in
SPq By (4.5) it is enough to show that each G^iel) fixes

exp tX : f(e2nit) exp tXf(l)~1 exp tX

If i p 0, Gj Gt is a subgroup of the constant loops, so / is a constant

g e Gj. The desired equation is then equivalent to g - X X (recall that

g - X Ad{g)X). But since i ^ 0, 0Cj(X) 0, so this is true by definition.
Now suppose i 0, so that X lies on the outer wall: a0(X) 1. Then

X - a* + Y, where a g 2a0/a0 • a0 is the coroot of a0 and oc0(T) 0.

The equation we want can be written (/eG0) :

f(e2nlt) exp tX /( 1) exp — tX

Since /(l) e G0, /(l) • Y Y, and our equation simplifies to

f(e2nU) exp /(1) exp f- I

Note this is now an equation in the path space of G0. Identifying G0

with SU(2), it can be written

/ a be2nit\
_

(enit 0 \ fa b\ fe~nit o \
\ce~2nit d J \ o e~mt) \c d) \ o enitJ

Where \ e S 1/(2). This last equation is obviously correct, and we
\c dJ

conclude that LalgG n Pj fixes exp tX.

Conversely, suppose

/ exptX/(l)_1 exp tX or / exp IX /(l) exp — tX).

Then /(1) g Cg exp X Gj, and hence /( 1) h(l) for some h g LalgG n Pj.
But then h exp tXh( 1) exp —tX /.

A useful fact that follows from all this is :
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(4.6) Theorem. Evaluation at 1 induces an isomorphism LalgG n Pj Gj.
In particular, LalgG n Pj is a compact Lie group.

Proof. We have seen that e maps LaigG n Pj onto Gj. The kernel is

QaigGnPj. But QaigG acts freely on SPG, and LalgG n Pj fixes À/5 so

QalgG nPI= {1}.

Remark. As always, I is a proper subset of S in (4.6). Of course (4.6)

also depends on our assumption that G is simple. Its discrete analogue is the

fact that Wj is finite if W is irreducible. (It may be helpful to consider
the "discrete" versions of all the results of this section. For example, the

discrete version of "üöZ0G acts freely on £G" is "the coroot lattice
Horn (S1, T) acts freely on t (the foundation of ^G)"; of course the latter
assertion is trivial).

Note that we have shown that SPG/QalgG G, and in fact the orbit
map SPG -> G is given by evaluation at t 1. This can also be proved
directly. It reduces to the following interesting theorem, also observed by
Quillen.

(4.7) Theorem. Suppose X, Y g g and exp X exp Y. Then exp tX
f(e2nit)exp tY for some feQalgG. -

It is not hard to prove this directly—for example, it is enough to prove
it for G U(n). Not surprisingly, however, it is also implicit in what we
have already one. First, one can reduce to the case when G is-simple and
simply-connected. Using (1.3), one can easily reduce further to the case
X e Aj, Y g • X for some g g G. Then g g Cg exp X Gj, so g h( 1) with
^ ^ LaigG Pii Pj. Tet h exp tX g exp tX j then h g LaigG and f /z/z( 1) ^

is the desired loop.

§ 5. The Loops on a Symmetric Space

We assume throughout this section that G is simple and simply—connected.
If a is an involution on G with fixed group K, as usual, then K is
connected and G/K is simply—connected. The notations and conventions of
§ 1 and § 3 remain in force.

The loop space Q(G/K) is homotopy equivalent to the space of paths
m G that start at the identity and end in K. Now consider the involution
t on QG given by x(/) (z) a(/(z~)). The fixed group (QGf is clearly
homeomorphic to our space of paths, since / g (£2G)t implies f(-l)eK.
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Henceforth we will always consider (f}G)T in place of Q(G/K). Note also

the definition of x extends to LG, LGC, and even LalgGc : for if / : C* - Gc

is a regular map, so is a ° / ° (zi—>z), since a is anti—complex on Gc.

(5.1) Theorem (Quillen). The inclusion (Q.algG)x -> (QG)T is a homotopy
equivalence.

We defer the proof to the end of this section.

Thus Q(G/K) can be thought of as a real form of QalgGc. More
precisely, (LalgGc)x is a real form of LaîgGc, and Q(G/K) is a homogeneous

space of this real form. For clearly P (regular maps C->Gc) is invariant
under x, so from (3.3) we obtain a corresponding "Iwasawa" decomposition.

(5.2) Theorem. The multiplication map (QalgG)x x Px (LaigGc)T is an

homeomorphism.

On the other hand B is of course not x-invariant in general, since B

is not a-invariant. However the parabolic subgroup Q corresponding to the

black nodes on the extended Satake diagram is clearly x-invariant; in fact

Q Q x G#, where U# {f e P: /(0) 1} (note U* is x-invariant). Now
consider Nc LalgNc. Since a preserves Nc, x preserves Nc. Note
Horn (S1, T) is also x invariant and in fact if / g horn (S1, T), if a(/(z)~x).
It follows that (hom(51, T))x hom (51, Tm) I^m. It is also easy to see

that Nxc n Q is normal in (Nc)x ; the quotient is IFR. Here we recall that
WR is the affine Weyl group associated to the restricted root system E;
it has a canonical set of Coxeter generators SR. Write GR, BR, NR, for
(GC)T, Q\ Nxc, respectively.

(5.3) Theorem. (Gr, Br iVR, 5R) is a topological Tits system satisfying the

four axioms (2.11 (2.12), (2.20) and (2.21

Before giving the proof, we discuss some corollaries. If I c= SR, we let

Qj denote the parabolic subgroup Pr of Gc; here T consists of the black
nodes of the extend ended Satake diagram together with the white nodes

that correspond under restriction to elements of I (for example, Q Q<|>)-

Then Qj is x-invariant and the parabolic subgroups (containing Qx) are

precisely the subgroups Q}. Let (9l Q}. The proof of (5.3) will show that
for the minimal parabolics (9S, s e SR, (9JBR is sphere of dimension

n(s) m(as) + m(2as) (here the multiplicity m(2as) is of course zero if 2as

is not a root). If s1 sk is a reduced decomposition of wg W1, let

n(w) n(sx) + ••• + n(sk).
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(5.4) Corollary. The Bruhat decomposition of GjJ(9j is a CW

decomposition, and the closure relations on the cells are given by the Bruhat order

on W r. Furthermore the cell series is ^

(5.5) Corollary (Bott-Samelson). QG/K has the homotopy type of a CW-

complex with cell series Ywew^ ^"(W)' w^ere I ^
The cell series obtained by Bott and Samelson ([7], Corollary 3.10) is

described in terms of the diagram for tm, but can be shown to agree

with the one above (cf. [25] for the case of QG). Bott and Samelson

also showed that the cells they constructed are all cycles mod 2. Here,

reverting temporarily to the notation of § 2, their result appears in the

following form.

(5.6) Theorem. Let (G, B, N, S) be a topological Tits system satisfying
the four axioms, and let P be a parabolic subgroup. Then the Bruhat
cells of G/P are all cycles mod 2.

Proof Let P Pj, I ^ S, and fix w e W1. Let sx sk be a reduced

decomposition of w. If k 1 then PSJB is a sphere and maps homeo-

morphically onto £Sl by xB h aP. Hence Ew is an integral cycle. In
general, consider the space F w PSi x ß PS2 x B... x B PSJB, and let
w' s2 ••• sk. By assumption each projection Ps PJB is a locally trivial
principal B-bundle, so the natural projection Xw PSJB is a locally trivial
fibre bundle with fibre Xw>. Hence we conclude by induction on k that
Xw is a topological manifold (not necessarily orientable). The fundamental
class in mod 2 homology is represented by the cell AS1 x AS2... x ASk in
Xw, where As ^ Ps is chosen as in the proof of theorem 2.22, and by the

Steinberg lemma (2.9) this cell is carried homeomorphically onto Ew under
the natural (multiplication) map Xw -» G/P. This proves the theorem.

Returning to our standard notation, we have :

(5.7) Corollary (Bott-Samelson). QG/K has mod 2 Poincaré series as
in (5.5).

In general one could ask for a combinatorial formula describing the
differential in the cellular chain complex: d[£w] Yx-^w axlExf where the
sum is over the xeW1 that immediately precede w in the Bruhat order,
and satisfy n(x) + 1 n(w). The problem is to determine the integers ax.
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Of course if the multiplicities m(aj, m(a2s) are all even, every cell is an

integral cycle. Here we recall that the multiplicities are all even if and only
if G/K is of "splitting rank" (not to be confused with the split form
mentioned earlier): that is, rank K + rank G/K rank G. For example,
G itself, regarded as a symmetric space, is of splitting rank, as is

SU(2n)/Sp(n).

(5.8) Corollary. If G/K is of splitting rank, the integral homology of
QG/K is concentrated in even dimensions, and the Poincaré series is given by
the series of (5.5).

The "somewhat mysterious application..." of Bott-Samelson ([7], 4.1) is

quite transparent from the present point of view.

(5.9) Theorem (Bott-Samelson). Suppose rank G/K rank G (i.e., GR

is the split real form of Gc). Then dim HfflG/K, Z/2) dim H2q(Q.G; Z/2).
Hence the mod 2 Poincaré series of Q.G/K is IIi 1

(1 — fmi)\ where

the mt are the exponents of G.

Proof By assumption, tm t. It follows at once that x preserves B
and is the identity on W ; hence x preserves the Bruhat cells in Gc/P.

Furthermore, each cell is identified with a complex vector space in such a

way that x corresponds to a linear conjugation. Since every cell is a cycle
mod 2, this proves the theorem. (In more detail, a preserves the root
subalgebras Xa, and of course acts anti-linearly. The same is true for x

acting on the XnoL, and hence (by definition) for x acting on the root
subgroups exp Xn a. In particular x acts by a conjugation on each Us, s e S.

But every cell can be identified with a product of subgroups Us, by the

Steinberg lemma.)

Remark. Bott and Samelson obtain similar results with Q(G/K) replaced

by suitable homogeneous spaces of K. For example, if rank G/K rank G,

they show that dim Hq(K/Cktm; Z/2) dim H2q(G/T, Z/2). These results also

fit neatly into the present context, using the topological Tits system

(Gr, Br, Nr, Sr). The points is that G/T Gc/B, K/Cktm GR/J3R, etc.

Proof of Theorem 5.3. Axiom (2.1) is easy and is left to the reader.

The proof of the remaining three axioms for an ordinary Tits system follows

a standard pattern and will only be sketched. The first step is to prove
the Bruhat decomposition directly. One way of doing this, which is of some

independent interest, is sketched in § 8. Briefly, the argument is as follows.
The g-orbits in Gc/g are vector bundles over certain flag varieties, and
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T acts on each orbit as a conjugate linear bundle automorphism. For the

orbit QwQ/Q, this action is free on the base unless we WR. Furthermore,

if weWR then QwQ BwQ so the Bruhat cell BwQ/Q is x-invariant. The

Bruhat decomposition for GR then follows by taking x fixed points of the

Q — Q double coset decomposition of Gc. In particular this proves that

Br, Nr generate GR. Axiom (2.3) is easy. For (2.4), we use induction

on / (w). The inductive step reduces to showing that sBR s BR u BR sBR,

which in turn can be deduced from the Bruhat decomposition for rank one

groups (already proved). (Cf. [33], Prop. 1.2.3.17, for the details of one
version of this argument.)

Axiom (2.11) is immediate since WR is an irreducible affine Weyl group
(see § 3). For the remaining axioms, we need to explicitly construct certain

subgroups Kt (analogues of the "little SG(2)" subgroups in the loop group
case), where Kt corresponds to the ith simple root ßt- of the affine restricted
root system Ë. When i ^ 0, Kt is the group of constant loops Kalready
constructed in § 1. K0 is constructed in the same way. Let I ç S be the
subset formed by taking the union of the black nodes and the special node
— a0 of the extended Satake diagram, and then taking the path component
of - cl0 in this smaller diagram. Let G7 LalgG n P7 (compare § 4). Then
Gj and its commutator subgroup G 7 are x-invariant subgroups and we define
K0 (G'jf. Note that K0 is a compact subgroup of GR; in fact evaluation
at 1 yields an embedding K0 -> K. (Note however that K0 does not consist
of K-valued loops.) The complexification of G7 is the subgroup G'c 7

generated by the root subgroups Ui9ie I. Passing to x-fixed points we obtain
a semisimple real form GR 0 with K0 as maximal compact. The structure of
these groups is easily read off from the Satake diagram.

Example. Let G S 1/(4), K Sp(2), as in § 1. Then S (0, 1, 2, 3)

A Bz^

Cz_1 D
and I (0,1, 3). The parabolic P7 consists of all matrices

m Gc with A, P, C, D 2 x 2 matrices over C[z]. GC J consists of the element
of Pj with A, P, C, D constant ; note evaluation at one is in this case ai
isomorphism onto the constant loops. In this example Gj G'j SU(4

and K0 is the subgroup of matrices as above with e Sp(2). In

12

particular K0 is isomorphic to Sp(2); note this in fact follows immediately
from the Satake diagram.

Now let (9t be the minimal parabolic <PR, 5f> ^ GR, as usual. In Axiom
(2.12) we take A,- Kt. Certainly Kt is compact and contains 1, and since



152 S. A. MITCHELL

Ki n Br is a subgroup of lower dimension, we have Kt Kt n £R stBR.
The Iwasawa decomposition of GRi shows that KtBR GRiBR. Now
(9t Br Br sßR, and BR ^BR UR iSiBr where UR f corresponds to the

positive roots ßf and (if 2is a root) 2ßt. Since UR t ^ GRti, this

completes the proof of (2.12). Note (VJBR A/AnJ3R. Since UR i is

homeomorphic to a real vector space of dimension rii mpf + m2ßl-, and

(9JBr is compact, we also conclude that (9fBR is a sphere of dimension nC9

and that -> (9JBR has a local section. This completes the proof of
Theorem 5.3.

Now let &GjK be the building associated to the topological Tits system
of (5.3). To prove Theorem 5.1, it is enough to show (as in § 4):

(5.4) Theorem (Quillen). (QalgG)x acts freely on ^G/X5 with orbit space

G/K.

Proof Bg/k is a quotient space of (QalgGf x K/CKtm x A, where À is

the Cartan simplex in tm (here we are using (5.2) ; note that {LalgG)x n PT

Ga K). Hence the orbit space of the (Qa^G)T-action is a quotient of
K/CKtm x A. As in the proof of (4.2), we see that the equivalence relation
here coincides with that of Theorem 1.9. Hence the orbit space is G/K,
as desired. To see that the action is free, we introduce the space of
special paths yG/K Path of the form f(e2nit) exp tX with / e (Q.aigGy and

X em. The proof now proceeds exactly as in (4.2); details are left to the

reader.

The other results of § 4 also go through : SPG/K is (LalgGf—equivariantly
homeomorphic to the building SfiGjK, and if X, Y e m, exp X exp Y implies

exp tX — f exp tY, where / g (QalgG)x.

§ 6. Examples

In this section we discuss six examples, the first four of which arise

in the Bott periodicity theorems (§ 7). The first and last examples are
discussed in some detail, the others are only sketched.

(6.1) Q(SU(2n)/Sp(n)). This is perhaps the simplest nonsplit example. SU(2n)
has an involution a given by a(A) JÄI-1, where J is the matrix
/0 -A
I J. The fixed group K is Sp(n). The extension of a to SL(2n, C)
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is given by the same formula, so the corresponding real form is SL(n, H)

GUn, H) n SL(2n, C). For convenience we now make the obvious change

of basis transforming J into a direct sum of 2 x 2 matrices

In this basis tm consists of the diagonal matrices a

with the % pure imaginary.
Hence CKtm f]" Sp(l), NKim ^ J Sp(l), and the relative Weyl

group WG K is Yjn - The root systems are described as follows. In the usual

notation, the root system <D of SU(2n) consists of

{+ (et-ej): 1 ^ i,j < In, i ^ j} •

Clearly <F0 {+ (et—ei + 1):iodd}. If a g tm is as above, let f(a) at.
Then the restricted root system S consists of {+ {ft — fj)' 1 ^ i,j ^ n: i / j},
and so has type An_1. Moreover it is clear that the multiplicities are all
equal to four. Thus the extended Satake diagram is

and the extended Dynkin diagram is

— ao(4)

CO

su

Note that the parabolic subgroup Q(obtainedfrom the black nodes of the
Satake diagram) is just the isotropy group of the standard flag C2 c C4 -
<= C2""2 <= C2". The corresponding "quasi-Borel" subgroup Qa (minimal
parabolic, in the standard terminology) is then the isotropy group of the
complete quaternionic flag H1 < H2 - < H" (in SL(n, H)). The little K„
ubgroups (aeS) are all Sp(2)'s.
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Now consider the involution x on LaigSL(2n,C) SL(2n, C[z, z-1]). If
f(z) Y Akzk, (xf) (z) Y JÄkJ~1zk. Hence the fixed group L\lg is just
SL(n, H[z, z-1]). Since we know that the affine Weyl group W of type
An-1 has Pjy/W(t) n^a-O"1, the extended Dynkin diagram above
shows immediately that ÛSU(2n)/Sp(n)) has torsion—free homology, with
Poincaré series n"=i (l-*4*1)"1- For more applications of this approach,
see [9] and § 7.

(6.2) Q(SO(2ri)/U(ri)). For convenience we take n — 2k, k ^ 2. Let J be as

in (6.1) and define <j(A) JAJ~1(AeSO(2n)). Then K U(n), embedded as

{± et ± ej\ 1 < ij ^ n,i ^ j}, where denotes projection on the ith

2x2 block in t, clearly Y has type Ck and consists of ± (fi9 —/}), ± 2f,
where ßA) a,. We have ® { + (e; + ei+1): odd} and L2-
The simple roots j\ — fi + 1 have multiplicity 4, whereas 2/f has multiplicity
one. Thus the extended Satake diagram is

and the extended Dynkin diagram is

ock

4 4
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(Here the usual basis eu — e2,e2 — e3, ••• x — en, en_1 + en for 0 has been

replaced by the basis

ei + ~c2 - e3>e3 + —e4- — e5, en-1 + en,en.1 — en

In particular the highest root is now ex — e2).

(6.3) (Q(SU(n)/SO(n)). Here the involution on SU(n) is cr(H) Ä. Hence we

are in the split case and everything is transparent :

Gr SL(n, R), (Lalg SL(n, C))T - SL{n, R[z, z"1]), etc.

The Satake and Dynkin diagrams are just the Dynkin diagram for An-1
(all Satake nodes white, all multiplicities equal one). For further details and

applications, see [9].

(6.4) (Û(Sp(n)/U(n)). Embed Sp(n) in SU(2n) as usual and define a(^4) — Ä.

The fixed group is U(n) embedded as matrices ^ ^ with A, B real.

Again we see that we are in the split case ; the associated real form
Gr is Sp(n, R), Lxalg is Sp(n, R[z, z~*], etc. The extended Dynkin diagram is

a0

1 1

We can conclude e.g. that QSp(n)/U(n) has mod 2 Poincaré series

n"=1 (1 — t21'1)'1 (cf. Theorem 5.9).

(6.5) ÇIS". Assume n 2k + 1 ; the case n even is similar. Define an
involution a on 50(2/c+l) by a(^4) eAs~x, where

1

s

Then K — 5(0(1) x 0(2k)) 0(2K), so K' S0(2k). The corresponding rea

from Gr consists of matrices in 50(2/c+l, C) with alx and A

real and the remaining entries pure imaginary. In fact (as in easily checked)
Gr 50(1, 2k). The torus tm is the set of matrices
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and hence the relative Weyl group has order 2

-1

(generated byj

1

-1

Using the usual notation for O, O0 {± (ei — ej), ± ek: ij, k ^ 1}. Thus £
has type A1 (no doubled roots) and the multiplicity of its one positive

root is 2k — 1. The extended Satake diagram is

and the extended Dynkin diagram is

-a0
•—

2k—1 2k-X

(The symbol oo indicates that has infinite order.) The groups
K0, K, are both 5'0(2k),s. In particular we obtain a model for Q.S" with
one cell in each dimension of the form i(n— 1).

(6.6) QCP"'1. This example serves to illustrate two phenomena not
encountered above: a nontrivial involution on the Satake diagram, and a

restricted root system which is not reduced. Take G SU(ri) and define

g(ä) &A&, where s is as in (6.5). Thus K S(U(1) x U(n — 1)) and

G/K CP"'1. The corresponding real form of SL(n, C) is denoted SU( 1, n— 1)

and is described as in (6.5): matrices ^ ]1 in SL(n, C) with an,

A real and the remaining entries pure imaginary. The torus tm consists of
matrices
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with a pure imaginary. Here we are taking as Cartan subalgebra in

su(n) the matrices

(:
: -..)

Using this Cartan subalgebra, a simple system of roots for <D

is given by the following table :

ocjl 2a + b — c3

oc 2 —2a + c3 — c4

gc i ci +1 — ci + 2 (3^i^n — 2)

a«-i b +

The highest root oc0 oCjl + oc2 + + a„_x then takes the value 2b. The

action of a on these roots is given by i— —0^(2^/^/1 — 2) and aotx

oc2 + oc3 + ••• + a„_ 1. Thus O0 is the span of a2, ••• a„_2, and the extended
Satake diagram is

X /
Furthermore the restricted root system E has type 5CX (type ^ with

doubled root). Indeed if ß is defined by

b,

we see that ß has multiplicity 2n - 4 and 2ß has multiplicity one
(a restricts to 2ß). Hence the extended Dynkin diagram is

-2ß
•—

2n-4, 1
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Following the procedure discussed in § 5, we have at once that Gß

is all of SU(n), so K U(n-1). Note K/CKtm S2n~3. On the other
hand iC2p S0(2) (G2ß is the 51/(2) in the upper left corner). From the

Dynkin diagram we conclude that our model for QCPn~1 has one cell in
each of the dimensions 0, 1, In — 2, 2n — 1, 4n — 4, 4n — 3,... in other words,
the cell series is (1 + t) (1 + t2n~2)~1. (Recall that the affine Weyl group of

type Ax is just the free product Z/2 * Z/2, so that the Bruhat cells are
indexed by 1, s0, s^q, s^So, etc. By the above remarks, s0 receives weight
one and s1 weight 2n — 3, hence our formula.)

§ 7. Bott Periodicity

Bott's theorem, in its original form [6], is a general statement about
the range in which certain maps K/L - QG/K are homotopy equivalences.
The periodicity theorems proper are then deduced from this, taking
G, K, L to be suitable classical groups. In this section we derive a version
of Bott's theorem by showing that in many cases the map (p is a homeo-

morphism onto a Schubert subspace of £l(G/K); then one merely counts
cells. In fact, in these cases we will be able to read off the desired range
directly from the Dynkin diagram of G/K.

We assume that G is simple and simply-connected. (As usual, the essential

point is that G/K is simply-connected; then we can if necessary replace G

by its universal cover.) Let X: [0, 1] -> G be a path of the form X(t)

exp tX, where X belongs to the coweight lattice Jm. In otherwords,

X g tm and exp X is central in G. Then for all k e K, the path cp^

EE XkX'1 k~1 actually lies in (Q.algGy ; see the proof of 4.2. Hence X \—» cp^

defines a Bott map K/CkX (DaZ^G)T Q.G/K). Identifying Jm with the group
of paths X as above, the most interesting X are obviously the fundamental

coweights sz dual to the simple restricted roots ß£; ß7-(sf) Ôf</-(1

Among these one may single out the very convenient class of miniscule

coweights. These are the sz dual to a miniscule root ßf-i.e. a simple root
which occurs with coefficient one in the highest root ß0. The miniscule

coweights are precisely the nonzero elements of the coweight lattice which

are also vertices of the Cartan simplex. They exist whenever the root
system is reduced and not of type G2, F4 or E8 ; in terms of the Dynkin
diagram, they correspond to nodes on the ordinary diagram which are

conjugate to the special node — a0 under an automorphism of the extended

diagram. Thus for example in type An every simple root is miniscule,
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whereas the number of miniscule roots in types Bn, Cn, Dn, E6, En is

respectively 1, 1, 3, 3, 1. Next, define the distance d(st, Sj) between two elements

of SR (or nodes on the extended Dynkin diagram of G/K) as follows.

Given a path p from st to Sj on the extended Dynkin diagram, let mp

be the sum of the multiplicities of the vertices of the path (including st

and Sj). Then d(Si,Sj) is the minimal possible value of mp (p ranging
over all paths). For example, in the split case, with raß 1 for all simple
restricted roots ß, d(st, Sj) is just the minimal number of vertices in a path
linking st to Sj. (Arrows are ignored, and doubled or tripled edges in the

diagram are counted as single edges.) We may now state our version
of Bott's theorem :

(7.1) Theorem. Let sf be a miniscule coweight of the restricted root system
£, and let (p: K/C^ Q.G/K be the Bott map associated to S;~1.

Then (p is an isomorphism on homotopy groups in dimensions less than
d(s0, st) — 1, and is an epimorphism in dimension d(s0, st) — 1.

(7.2) Corollary (Bott Periodicity). There exist Bott maps of the following
form, which are isomorphisms on homotopy through the indicated range of
dimensions :

(a) Gc2n,2^QSU(2n) (2n)

(b) SO(4n)/U(2n) -+ Q0SO(4n) (4n -4)
(c) U(2n)/Sp(n) ClSO(4n)/U{2n) (4n-4)
(d) G^n^ QSU{4n)/Sp(2n) (4n + 2)

(e) Sp(n)/U(n) -+ QSp{n) (2n)

(/) U(n)/0(n) -> aSp(n)/SU(n) (n)

(g) G ;B>
n -> QS U(2n)/SO(2n) (n-1)

Proof of Corollary. We need only exhibit miniscule coweights et- such
that d(s0,si)-2 is the number indicated and K/CKst is as shown. We will
do this for (c) and (d) and leave the rest of the fun to the reader
(see §6). In case {d), we have seen that S has type A4n_1 and hence every
simple root is miniscule; we also know the multiplicities all equal four.
Taking s- s„, we obviously have d(s0,sn) 4n + 4. In case (c), S has

C2n; there is one miniscule root a2n. From (6.2) we compute
d(so, s2n) 4n — 2.

Proof of (7.1). The proof is an easy generalization of that of
Propositions 2.2 and 2.6 in [25] (note, however, that d(sh sj) is defined somewhat
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differently there). Therefore it will only be sketched. First of all, consider
the set of restricted roots ß such that ß(s) 0. This set is spanned by the
set I of simple roots it contains, and if V is the corresponding set in S

(as usual), CGz Thus CKe (CGef Kj. Since Kj is a maximal compact
subgroup of the parabolic Gj(( (Pj<)CT), the Iwasawa decomposition Or KjQ
shows that K/Cks Since (Qaig)x GJP\ the Bott map can be

thought of as a map -> GjJP\ To describe this map in terms of
Bruhat cells we need to alter it slightly. First, let yt s£w, where

w wmw0G WR. Here Wm denotes the maximal length element of Wm,
where [z] SR — {z}. (This definition is due to Iwahori and Matsumoto
[16], among other things it provides a splitting of the projection W

W/W.) Then the map cp' : K/Cka (.LalgGf/K (QÖ^G)T given by
is homotopic to cp, since cp' w-1(p and K is connected.

Hence in the proof we may replace cp by cp'. The point of this is :

(7.3) Lemma.

(a) The map 0:/ Pi defines an automorphism of Gc

preserving Gr

(b) © : Gr Gr preserves Q, and in fact permutes the simple roots

(defining an automorphism of the extended Dynkin diagram). In particular

pf.(l, ß0) « (0, -ßi).
(c) © I

gr induces an embedding GRj(9I Gr/Pt, which corresponds to

cp' and is a homeomorphism onto a Schubert subspace.

Remarks. In (a) we have identified Gc with the group of paths :

[0, 1] —> Gc of the form f(e2nit), where / : S1 -> Gc is algebraic. In (b), the

automorphism of the Dynkin diagram preserves multiplicities.
It remains to show that every cell not in the image of cp' has dimension

at least d(s0,Sj). Now 0 preserves the simple reflections SG/K, with
0(5.) — 50? and clearly the cells which are in the image of cp' are precisely
the Ew such that w e Wsr and 0(so) does not occur in a reduced expression

for w. Since every such expression must begin on the right with s0, a

moments reflection should convince the reader that the minimal dimension

of a cell involving 0(so) is d(s0, 0(so)). Since

d(s0 ,©(s0)) rf(©_1(s0), s0) ^(so.Sj),

this completes the proof.
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§8. Appendix: Real Forms

and the Generalized Bruhat Decomposition

Let Gc be a reductive complex algebraic group, as usual, and let

P Pl9 Q Pj be parabolic subgroups. Let Hc be "the" Levi factor of P
with maximal compact subgroup 77. Explicitly, 77c is the (closed, connected)

subgroup whose Lie algebra is generated by tc and the I_a+s,ae/. We

have P HCUj, where the unipotent radical Uj corresponds to the positive
roots not in the span of 7.

(8.1) Theorem. The P-orbits in Gc/Q are holomorphic vector bundles

over flag varieties of 77c.

Theorem (8.1) is certainly well known, although not so easy to find
in the literature. In this section we will prove (8.1) and its loop group
analogue in a more explicit forfn, and show how one may easily deduce
the Bruhat decomposition for real forms from this. (The proofs of various
technical lemmas about root systems will be omitted. The details are somewhat

tedious, but not difficult.)

(8.2) Lemma. Each Wj — W3 double coset in W contains a unique
element w of minimal length. For such aw we have

(a) {xeWI:w~1xweWJ} WK, where K {sel: w-1sw e J}.
(b) each x e WjW W3 has a unique factorization of the form x — vwy,

with ve(fF7)*, ye Wj. Furthermore l(vwy) Z(v) + l(w) + l(y), (in
particular vw e WJ).

Let w be minimal as in (8.2), and let E {h e Hc: w-1 h w e Q} (i.e.,
E is the isotropy group of wQ in Hc).

(8.3) Lemma. E is a parabolic subgroup of 77c, and its Levi factor
Fc normalizes Uw. n

J

We recall here that Uw — {ue U : w
1

uw }. In the present situation
it is easy to see that U„^U,, and w-1[/ww < JJ J The proof of (8.3)
then reduces to a simple calculation in the root system. Now form the
balanced product Hc xEUw, where E acts on Uw via the projection
'' Fc. Since exp : uw —>Uwisan ad-equivariant isomorphism of varieties,
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He x E is an algebraic vector bundle over the flag variety Hc/E. Of
course we also have HJE H/F and Hc x E Uw H x F Uw (by the

Iwasawa decomposition).

(8.4) Theorem. The map 9 : Hc x E Uw -> PwQ/Q given by (h, u)

i— huwQ/Q is an isomorphism of varieties.

Proof Clearly 9 is well—defined and surjective. To see that 9 is injective,
note that the Bruhat decomposition of HJE lifts to a cell decomposition
of Hc x £ Uw; the cells are of the form (Uvv) x (Uww), where v ranges over
(Wi)K. By Lemma (8.2), the vw are distinct elements of WJ, so 9 maps
cells to Bruhat cells. Finally, (8.2) and the Steinberg lemma show that 9
is injective on each cell.

Example. - Let Gc GL(n, C), so W » ^ and S (sl9*« s„-i) as usual.

Take I J S — {sfc}, so GJQ is the Grassman manifold of /c-planes in

n-space, and Wj — x Xn_k- The (I — /)-minimal elements are precisely the

shuffles ai defined by af(r) r (if l^r^i), at(r) k + r — i(i+ l^r^k);
here i ^ k and k — i ^ n — k. Note ot has length (k — i)2. The F( Q)-orbit
of at- is {W e Gn k: dim W n Ck /}, where Ck is the span of the first k

basis vectors. This orbit can then be identified with the vector bundle
horn (yn-k,k-ii li,i) over Gm x Gn-k,k-i(y denoting the canonical bundle).

Now suppose given an involution a on Gc (in normal form) with
Gr (Gc)a, etc. We take / corresponding to the black nodes on the Satake

diagram—i.e., I corresponds to the simple roots a such that <jol —a.

Also take / J, so Q Pj. We have BR Qf (by definition) and

WR Wa/Wj (Wj is usually denoted W0). Note that a preserves Q and

hence permutes the Q — Q double cosets.

(8.5) Theorem.

(a) If w e W° n W1, then QwQ BwQ UwwQ and a acts on

Uw as a conjugate linear involution.

(b) If w $ Wa, QwQ n GR is empty.

(8.6) Corollary (Bruhat decomposition). GR BRwBR.

Proof. Note that on HJC(Hc), a is the compact involution. In
particular a is the identity on H/C(H) ; in fact H (CKtm) (C(H)). It follows
that hwQ wQ for he H, and hence QwQ UwQ UwwQ. A calculation
with roots shows that g(GJ Uw, and (a) follows. Now consider a fixed w
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of minimal length in WjwWj. To prove (b), we may as well assume

that a preserves QwQ; i.e., g(w) awb with a, beWj. We identify the

orbit QwQ with H x F Uw as in Theorem (8.4).

(8.7) Lemma.

(a) a e NHF, and a is well defined mod F.

(b) a~lo(Uw) a Uw.

It now follows that a acts as a conjugate linear bundle automorphism:

a(huwQ) hz<j(u)awQ hzau'Q hazu'Q

where u' a_1a(u)a and z e C{H). Furthermore the action on the base

H/F is given by <j(hF) haF. Hence either a acts freely on the base,

and hence freely on the orbit, or else a e F. In the latter case <j(wW

— wWj. But it is a (trivial) exercise in linear algebra to show that this

implies o(w) w.

Example. Consider the involution <j(A) JÄJ_1 on SU(4), as in §6.
Q is the stabilizer of the standard 2-plane in C4 and H 5(17(2) x 1/(2)).

The minimal length elements (with respect to I — I, where / (sx, s3))

are 1, s2, (shuffles as in the preceding example). The corresponding
Q-orbits are respectively a point, a line bundle over CP1 x CP1, and a cell

of complex dimension four. The action of a on CP1 x CP1 is the obvious

one on each factor, arising from the quaternionic "j" acting on complex
lines in H, and obviously is free. Taking fixed points yields the usual cell

decomposition of the 4-sphere HP1.

Now consider our algebraic loop group Gc. For simplicity we consider
only parabolics Pj5 Pj with /, J ^ S (i.e. Pj5 Pj^P GC[z]), although this is

not really necessary.

(8.8) Theorem. The Prorbits in Gc/Pj are holomorphic vector bundles
over flag varieties of Hc.

Here we note that although our notation is slightly ambiguous—in (8.8)
P/ is a parabolic subgroup of Gc, but it could also denote a parabolic
in Gc—the Levi factor Hc is the same for either interpretation. In any
case the proof is identical to the proof of the classical case, with the affine
root system replacing the ordinary root system. In particular the analogues
of (8.2), (8.3), and (8.4) hold.
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Example. Consider the P-orbits of Gc/P ElalgG (G simply-connected).
These are indexed by homomorphisms X: S1 -> T that lie in the closure of
the dominant Weyl chamber (a(X) ^ 0 for all ae<D+), and are precisely
the stable manifolds of the energy flow on QG ([28]). The Levi factor

Hc is just Gc in this case, so H G, and PXP/P is a vector bundle

over G/CqX. Now WXW where — means W-conjugate. Hence,

although X will not be minimal in WXW, the formula of Iwahori and

Matsunoto shows that the minimal element has the form Xw, and has

length Xae(D+ a(^) — l{^ > 0: öl(X) ^ 0} |. Hence this length is the complex
dimension of the vector bundle in question, and one can even determine
the bundle explicitly. For example, suppose G SU(n). Then X corresponds
to a sequence of integers (b1,...,bn) with Ypi 0 and b1 > b2 ^ bn.

Write this sequence in the form {a1, a1,... ar, ar), where there are i1 entries

al9 i2 entries a2, etc. Then G/CgX is the flag variety U{ri)IU{i^) x x U(ir).
Over this there are r canonical bundles £,k of dimension ih ; let ^,kl

hom(^,^). Now La>0aM T,k<l(ak~ai)hh,and| (a>0: a(X)/0) [

Zk<M. This suggests that the bundle is ®fe<z (ak — at — 1) ^kl, and indeed
this is easily verified. For the ^kl are precisely the irreducible components
of the adjoint action of CGX on the Lie algebra of the unipotent radical of the

corresponding parabolic (i.e. the Lie algebra spanned by the Xa with
a > 0,*a(X) / 0). Then one can check that Ukw corresponds to the strictly
positive roots (n, a) (i.e. n^l) such that k_1 • (n, a) (n — <x(X), a) is strictly
negative (i.e. n — a(X)^ — 1). Furthermore since CGX consists of constant loops,
it preserves the sum of the root subalgebras of fixed height n. Hence each

^kl (thought of as a representation of CGX) occurs in Ulw with multiplicity
ak — at — 1, which proves our assertion.

Finally, consider the involution t on Gc. Theorem (8.5) and its proof
carry over without difficulty, and we obtain :

(8.9) Theorem. Gr =H
WEWR

BR
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