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QUILLEN’S THEOREM ON BUILDINGS AND THE LOOPS
ON A SYMMETRIC SPACE

by Stephen A. MITCHELL ')

ABSTRACT

In the mid 70’s Garland and Raghunathan, and (independently) Quillen
discovered that QG (G a compact Lie group) is homotopy equivalent to
an infinite dimensional flag variety, and that Bott’s cell decomposition
of QG can then be obtained as a Bruhat or Schubert cell decomposition.
Quillen’s method applies also to the loops on a compact symmetric space M,
and involves identifying the path space of M with a certain Bruhat—Tits
building. The details never appeared. In this paper we develop a theory of
“topological” buildings and prove Quillen’s theorem. We then show how
one can rederive the Bott—Samelson theorems on QM, and the real and
complex Bott periodicity theorems, from this point of view.

In the 1950°s Bott, and Bott and Samelson, obtained a series of beautiful
results on the topology of loop spaces of compact symmetric spaces: the
Bott periodicity theorems [6], a cell structure (with various applications to
homology) [4] [7], and a description of the Pontrjagin ring [5]. All of
these theorems were proved using Morse theory. In the mid 70’s another
very different approach emerged in the work of Garland and Raghunathan
[12] (who only consider the case of a compact Lie group) and (inde-
pendently) Quillen [30]. The new point of view forms a part of the theory
of loop groups: if G is a simply-connected compact Lie group, with
complexification G, the group LG of maps S' — G can be regarded as
an infinite dimensional complex algebraic group. The based loops QG then
appear as a homogeneous space of LG, analogous to a flag variety. If
M = G/K is a symmetric space, QM is a real form of QG. The cell
structures of Bott and Samelson are obtained from a Bruhat decomposition
of LG¢, and their results can be derived from the combinatorics of the
affine Weyl group. In addition, QM is the direct limit of finite dimensional
“Schubert varieties”, and recently this point of view has led to some new

1) Partially supported by a grant from the National Science Foundation.
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results on the homotopy type of QSU(n), QSU(n)/O(n), and QSU(2n)/Sp(n)
(191, [24], [26]).

There are two key ingredients. The first concerns the structure of the
group of “algebraic loops” L, ,Gc—ie., the regular maps C* — G¢ (§ 3).
Here the basic idea goes back to Iwahori and Matsumoto [16], following a
suggestion of Bruhat. These authors show how to associate a Tits system
(§ 2) to any Chevalley group over a local field, so that the Weyl group
of the system is the affine Weyl group. Now if we write 5C for the group
of points of the algebraic group G over C[z,z7 '], it is easy to see that
L,,Ge = GC. Hence the results of [16] can be applied (at least after
completing with respect to the ideal (z)) and we obtain a Tits system on
L,,Gc. The group P of regular maps C — G¢ is then a maximal parabolic
subgroup, and the homogeneous space @C/P (which is a direct limit of projective
varieties) can be identified with Q,,,G = {f € L,,G¢: f(S') < Gand f(1) = 1}
(“Iwasawa decomposition”). The axioms for a Tits system then yield a Bruhat
or Schubert cell decomposition of GC/P, and hence a cell decomposition of
Q,,G. The cells are indexed by Hom (S, T), where T is a maximal torus.
After some further technical work, this idea can be generalized to QM : if
M = G/K, where K = G° for some anti-complex involution o on G
preserving G, we can define an involution t an L,,G¢ by tf(z) = off(2)).
The fixed group is a real form of GC. Similarly, we replace Q,,G by
(Q,,,G)"—the space of Z/2—equivariant loops—and the cell decomposition
of (€,,G)" is obtained in an analogous way (§ 5). Of course to apply any of
this to the original problem, we need the second ingredient: Let €, M
= (Q,,G)’, and note that QM can be identified with (QG)".

THEOREM (Quillen).  The inclusion Q,,M — QM is a homotopy equivalence.

In the case M = G this theorem has several completely different proofs
([12], [29], [30]); it can also be deduced from Bott’s work and the
Bruhat decomposition [25]. The proof suggested by Quillen is particularly
beautiful, and applies to all compact symmetric spaces M. The idea is the
following, taking M = G for simplicity: It is sufficient to produce a con-
tractible space E on which Q, G acts freely, with orbit space G. Quillen
observes that a plausible candidate for E is already at hand. To any
Tits system one can associate a certain simplicial complex (or space)
#B—the building—and when the Weyl group of the system is infinite, as
it is here, the building is contractible. In fact # 1s a certain quotient
space of L,,G/T x A, where A is a simplex of dimension equal to rank
G. It follows that the Q,,G orbit space is a quotient of G/T x A. But it
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is a classical fact that G = G/T x A/~ (§1), and on inspection one sees
that the two quotients are identical. In fact (this is also due to Quillen)
% has a very concrete description: it is the space of paths in G of the form
f(e*™) exp tX, where f € Q,,G and X € g. The action of Q,,G on this space
is obviously free, which completes the proof (§ 4).

The purpose of this paper is to give a detailed exposition of Quillen’s
idea, with reasonably complete proofs, and to show how one can derive
the results of Bott and Samelson. (Along the way, we also give an axiomatic
treatment of topological Tits systems.) The paper is organized as follows:

In § 1 we establish most of our notation concerning Lie groups, symmetric
spaces, etc.; and collect some preliminary results. The most important point
here is the classical description of M as a quotient of K x A, where A
is the Cartan simplex. The reader will probably prefer to skim through
this section first, and refer back to it later when necessary. The main
references are [13], [22], and [33]; a short introduction to real forms,
Satake diagrams, etc. can be found in [23].

In § 2 we discuss topological Tits systems (G, B, N, S) and their associated
buildings. Although the axioms for a Tits system may seem obscure at first
encounter, and lack the geometric appeal of Morse theory, it can not be
denied that they are remarkably simple. The structure theory of such systems
constitutes our main technical tool. However, in our context it is necessary
to take into account the topology the system. We define topological Tits
systems in a rather minimal way, and then state four additional axioms
that will be satisfied by all the Tits systems considered in this paper.
These axioms are fairly easy to verify in most cases, and suffice to establish
various desirable properties: For example, that the Bruhat decomposition of
a “flag space” G/P is a CW-decomposition, with the closure relations on the
cells given by the Bruhat order on the Weyl group. Much of the treatment
here is inspired by Steinberg ([32]) and Kac and Peterson ([17], [18], [19]).
We then introduce the topological building B,;. It is a quotient space of
G/B x A—in fact, it is precisely the homotopy colimit of the diagram of

flag spaces G/P,(I<S). We show how to adopt the standard proofs of the
:F

Solomon-Tits theorem to the topological context. Thus B, is contractible
if W is infinite and is a certain suspended quotient of G/B otherwise.
As an example, we note that for the usual Tits system associated with
a real form of a semisimple complex Lie group, the building can be identified
with the “tangent cut locus” of the associated compact symmetric space.

In §3 we briefly review some basic facts about algebraic loop groups.
(See for example [1], [27] and [29] for details). The most important fact
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is that LG admits a suitable topological Tits system. The existence of the
Tits system is proved more generally for Kac-Moody groups by Kac and
Peterson [17], so we only sketch the proof.

In §4 we prove Quillen’s theorem on the building, in the case M = G.
(We have separated this case from the general case in order to isolate the
main idea, which is fairly simple.)

In §5 we redo the results of §3, 4 for a general M. Again, many of
the more tedious technical results are only sketched. One key result is the
existence of a suitable Bruhat decomposition of the real form (L,,G¢)"
Presumably this follows from the general theory of algebraic groups, but we
have elected to give a direct proof that contains a result of some inde-
pendent interest. The point is that the involution t does not preserve the
Iwahori subgroup B (the “B” of the Tits system), so one can not simply
apply T to the B — B double cosets in GC. However © does preserve a
certain parabolic Q (canonically associated to the original involution o©),
and hence preserves the Q~ — Q~ double cosets. To analyze these, we show
more generally that for any flag variety G¢/Q or GC/Q, the P-orbits (here
P,Q are any parabolics) are holomorphic vector bundles over (finite
dimensional) flag varieties of the Levi factor of P (which can be explicitly
determined). This fact is certainly well known, but does not seem to appear
in the literature. The details are banished to an appendix (§ 8). We also show
in this section how to deduce various results from [7]: the cell structure on
QM, the fact that these cells are all cycles mod 2 (or actual cycles, if M
is of “splitting rank”), and the “somewhat mysterious” connection [7]
between H, QG and H, QM, when M 1s of maximal rank. (This connection
becomes transparent in the present context.)

In § 6, we discuss six examples: SU(2n)/Sp(n), SU(n)/SO(n), SO(2n)/U(n),
Sp(n)/U(n), S" and CP". Here, as elsewhere, we emphasize the way in which
information can be obtained directly from the Satake and Dynkin diagrams.

In § 7, we reprove the real and complex periodicity theorems. In effect,
we simply imitate Bott’s original, beautiful proof, but with Morse theory
replaced by topological Tits systems. The idea is that for certain commutator
maps K/H 5 QG/K, o(K/H) is a “Schubert subvariety”, so the range of
dimensions in which ¢ is an equivalence can be determined by merely
counting cells. But as an added twist, we show that if one only considers
the maps ¢ associated with the “miniscule roots” of M (these suffice for
Bott periodicity), then this range of dimensions is not only determined by
the root system (as Bott showed), but in fact can be read off directly,
in a rather amusing way, from the Dynkin diagram. Thus the Bott
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periodicity theorems can be proved by inspecting the Dynkin diagrams of
the classical symmetric spaces !

A traditional difficulty encountered by writers on this subject is the
inordinate quantity of notation required: to the usual list of notations for
root systems, Coxeter groups, complex Lie groups, etc., we must add still
more notation for symmetric spaces, restricted root systems, loop groups, etc.
Some further remarks: (1) we generally use a tilda for various “loop”
analogues of classical objects, but this notation should be interpreted
with care. For example, it G is a reductive complex algebraic group,
GC is the group of algebraic Gc-valued loops; on the other hand, if B
is a Borel subgroup of éc, its analogue is the Iwahori subgroup B—but
B is not a Borel subgroup, and is not the group of B-valued algebraic
loops (see §3). (2) in a similar vein, we generally use a subscript R to
denote the analogue for a real form (given a fixed involution ¢ as above)
of a complex object. For example, Gg is our real form of G¢: Gg = (G¢)°
On the other hand By, the analogue of B, is usually called a “minimal
parabolic”. It is neither solvable nor connected in general, and does not
equal B°, but nevertheless is the correct analogue of B (from the point of
view of Tits systems). (3) Given a root system @ (affine or ordinary), we
frequently confuse, identify and otherwise comingle the following sets:
(a) the simple roots (a system of positive roots having been fixed), (b) the
simple reflections, (c) the nodes of the Dynkin diagram and (d) a set of

integers 1, 2, «+ [ (or 0, 1, 2, = [) indexing all three of the above in a compatible
way.

A final word on the origin of this paper: Quillen’s work is unpublished,
and, to the best of my knowledge, he never even circulated a manuscript.
[ first learned of the idea (of using the building) from a set of notes,
kindly sent to me by Richard Kane, of a single lecture delivered by Quillen
at MIT in July of 1975. Theorems 4.1, 4.2, 4.4 and 4.7 are stated there,
and it is asserted that the methods and results carry over to symmetric
spaces. The proofs of these theorems in the present paper are {for better
or for worse) my own. The Bruhat and Iwasawa decompositions for algebraic
loop groups (or at least their topological applications) are apparently due
to Quillen and (independently) Garland and Raghunathan, although in their
algebraic form these results go back to Iwahori and Matsumoto. The
treatment here is largely based on work of Kac and Peterson [17]. Another
approach is via the “Grassmanian model” representation of Q,,,G; this too is
due to Quillen. We will not consider the Grassmanian model (or its obvious
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analogue for symmetric spaces, but see [9] for an example); there is a very
thorough account of this approach in [29].
I would like to thank Suren Fernando for some very helpful conversations.

§ 1. NOTATION AND PRELIMINARIES

Except in §2, G will always denote a compact connected Lie group of
rank [; usually we will assume also that G is simple and simply-connected.
Fix once and for all a maximal torus T in G, and let N denote the
normalizer Ng;T. The Weyl group W is N/T. Lie algebras are denoted
as usual by Gothic letter: g, t, etc. To each G we can associate a reductive
complex algebraic group G—the complexification of G—with Lie algebra
gc = g ® C. It contains G as a maximal compact subgroup, and as the
fixed group of an anti-complex involution. In fact G — G defines an equi-
valence of categories (compact Lie groups) <> (reductive complex algebraic
groups).

G¢ has a Borel subgroup (maximal connected solvable subgroup) B,
unique up to conjugacy, which we can assume contains the Cartan subgroup
(maximal algebraic torus) T¢. There is a split extension U —- B — T where
U is the unipotent radical of B. There is also an opposite Borel subgroup
B~ such that BN B~ = Tg; it fits into a similar split extension U~ — B~
— T¢. On the Lie algebra level we have gc = tc @ u @ u~, with u @ u~
being precisely the sum of the nontrivial eigenspaces for the adjoint action
of tc on gc. The corresponding eigenfunctions A:t. - C map t into iR;
as is customary we replace each A by o = A/2mi to obtain a set @ of
nontrivial R-valued linear functionals on t-the real roots. These form a
(reduced, crystallographic) root system in t*. The positive roots ®* correspond
to u, the negative roots @~ to u~. A simple system of roots a,, ..., o, (here we
assume G is semisimple of rank [) is then uniquely determined as the set
of positive roots which are not decomposable as sums of positive roots. If we
assume G is simple, so that ® is irreducible, there is a unique “highest
root” oy, which is characterized by the property that for every positive
root o, &, + o is not a root. The corresponding eigenspace in u is precisely
the center of u. And, speaking of eigenspaces, let X, denote the eigenspace
(or “root subalgebra”) of g¢ associated to o € . For each «, the subalgebra
of gc generated by X, and X _, is isomorphic to sl(2, C). The corresponding
subgroup, isomorphic to SL,C or PSL,C, 1s G ,. Choosing generators
E, for the X,, we obtain a basis for g¢, consisting of the E (ae®) and
H, = [E,, E_,] (0e®™).
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The basis above can be chosen so that the antilinear map g¢ — gc¢
defined by E, > — E_, is a Lie algebra automorphism with fixed algebra g.
In particular, then, we have g = t @ (Pyo+ Y,), Where Y, is spanned by
E, — E_, and i(E,+E_,). The Y, are “cigenspaces” for the adjoint action
of t on g. Each Y, generates a Lie algebra isomorphic to su(2). The
corresponding subgroups G,, isomorphic to SU(2) or SO(3), are extremely
important; for example, they generate G (if G is semisimple). Note G, is a
maximal compact subgroup of G¢ ,.

In t there are three lattices: the coroot lattice R, spanned by the
coroots oY = 2a/o- o (t is identified with t* via a W-invariant inner
product), the integral lattice I = Ker(exp:t—T), and the coweight lattice
J={Xet:u(x)eZVaec®}. We have R < I < J, with I/R = n;G and
J/I = C(G). If we think of R as a group of isometries (translation) of t,
then R is normalized by W, the affine Weyl group W is the semidirect
product RW. Next, consider the Stiefel diagram, which consists of the
hyperplanes P, , = {X e€t: a(x) = n} (ae®, neZ). The connected components
of the complement of the diagram are the alcoves, and we have:

(1.1) THEOREM. (a) W acts simply transitively on the alcoves; (b) W
is generated by the reflections in the walls of any fixed alcove. (]

Now let " be the positive Weyl chamber: {X et:a(x) > 0Vaec®).
Assume (for convenience) that G is simple. Then as our standard alcove we
take o/ T = {X € €7 : ay(X) < 1}. The closure A of &/ " is an [-simplex—the
Cartan simplex; its walls are the hyperplanes o; = 0(1<i<l), oy = 1. The
wall oy = 1 will be called the outer wall. Thus W is generated by the set
S = S u {so}, where s, is reflection in the outer wall. For each subset
I of S the Iface A; of A is defined by A, = {XeA: oc,-(x) =0 if
iel, i #0, og(x) = 1 if 0el}. (Here S = {sq, 5} = {0, 1, = I}). We let
A, denote the interior of A,, so that A is the dlS]Olnt union of the

A The isotropy group in W of any X € A, is precisely WI (the subgroup
generated by I).

(1.2) THEOREM. Suppose X,YeA and oX =Y for some oceW.
Then X =Y and ceW,, where I={S€§:SX:X}. ]

The most important feature of A, for our purposes, is the following :

(1.3) THEOREM. Every element of G s conjugate to exp X for some
XeA If G issimply-connected, X is unique.

[The proof of this classical theorem is easily obtained from what we
have stated so far, together with the conjugacy of maximal tori and the
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fact that two elements of T conjugate in G are conjugate by an element
of W1. L]

The first part of (1.3) asserts that the map G/T x A 5> G given by
w(gT, X) = gexp X g~ ! is surjective. Thus G is a quotient space G/T x A/~
for a certain equivalence relation ~. If G is simply-connected, the second
part asserts that the equivalence relation is given by (9,7, X,) ~ (9,7, X,)
if and only if X, = X, = X (say), and g, = ¢g, mod C; exp X. Now
C,exp X({Y eg:(exp X)+-Y = Y}) is easily determined (we write g+ X for
(Adg) (X)): Cyexp X = (@yezV) D t, and furthermore {oe @: o(X) e Z}
is generated by the simple roots it contains—provided that (—o,) is counted
as a simple root. (Of course for X € A, a(x) e Z means ofx) = 0, +1). In
other words, if X € A,, the identity component of C, exp X is the (closed)
subgroup G; generated by T and the G, , i e l. We recall here that although
centralizers of tori are always connected, centralizers of elements need not be.
Fortunately, however, there is the following result.

(1.4) THeoreM (Borel [2], Bott [unpublished]). If © is an automorphism
of a simply-connected compact Lie group G, the fixed group of © s
connected. ]

In particular centralizers are connected in this case, so Csexp X = Gy.
We summarize the preceeding discussion in the next theorem.

(1.5) THEOREM. Let G be a simple, simply-connected compact Lie group,
regarded as a quotient space of G/T x A as above. Then the equivalence
relation on G/T x A is given by (g,T, X) ~ (g,T,X) if XeA, and
g, = g, mod G;. L]

We turn next to symmetric spaces. Let o be an involution of a semi-
simple G with fixed group K, and let K’ be any subgroup of K containing
the identity component. For our purposes a symmetric space is by definition
a space of the form G/K'. However we will consider exclusively simply-
connected symmetric spaces; in that case K’ is necessarily connected. Lifting
G to sn involution & of the universal cover G of G, we see that
G/K' = G/K", where K" is the fixed group of &. Hence we may assume
without loss of generality that G itself is simply-connected, and in that case
the Borel-Bott theorem guarantees that K is connected. The induced invo-
lution on g will also be denoted by o. We have g = k @ m, where m
is the (— 1)-eigenspace of o. Let M = exp m. Then:
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(1.6) THEOREM. The map m:G/K — M given by n(gk) = go(g™") is a
K-equivariant homeomorphism. (K acts on M by conjugation. ) 1

From now on we identify G/K with M. Let t,, be a maximal abelian
subspace of m (any two such are K-conjugate); we can assume tn < L
The torus T,, = expt, is a.maximal torus of M (or of G/K). The relative
Weyl group Wg x i Ngt,/Cxt,; as in the absolute case, it 1s a finite
group.

Now the involution o on g (resp. G) extends uniquely to an anti-
complex involution on g¢ (resp. G¢). Passing to fixed points, we obtain the
associated real forms Gg = (Go)° (not to be confused with (G°)¢!) and
gr = (g¢)°. Gg is semisimple real Lie group, containing K as a maximal
compact, and will play an important role.

Up to conjugacy, we can assume that ¢ is in “normal form”: o preserves
t., and commutes with the “compact” involution of g¢ (the involution with
fixed algebra g). With this assumption, we now consider the associated
relative root system. Since o is antilinear, its action on t& is given by

(o)) (x) = Mox). This action permutes the complex roots, and yields an
involution on the real roots ®:(ca)(x) = — a(ox). Let @, denote the
set of roots which restrict to zero on t,; and let W, denote the associated
Weyl group (note @, is spanned by the simple roots it contains; W, is
the subgroup generated by the corresponding simple reflections). The relative
root system X is the set of nonzero linear functionals $ on t,, which are
restrictions of roots o € ®. One can show that X is indeed a root system,
although it 1s not necessarily reduced—i.e., there may be roots B such that
2P 1s also a root. The following result is due to Satake [31]:

(1.7) THEOREM. There is a base B (simple system of roots) for @
such that if ®% is the corresponding set of positive roots, G preserves
®" — ®,. Furthermore any such base satisfies (a) B ®, is a base for
®y and (b) For each aeB — ®,, there is a unique o €B — @,
such that oo = o mod ZO. O

Using this theorem, the Satake diagram of G/K can be described as
follows. Start with the Dynkin diagram of G; its nodes are labelled by the
simple roots of ® (or by the set S). Color the nodes belonging to @,
black and color the remaining nodes white. By part (b) there is an invo-
lution (possibly trivial) on the set of white nodes; this is indicated by
drawing double arrows <> between the nodes of each nontrivial orbit. Six
examples are given in §6; see [13], pp. 532-4 for a list of all possible
Satake diagrams. To capture all of the structure of G/K another diagram
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is needed, which we will call the Dynkin Diagram of G/K. First define
the multiplicity mg of a root B in £ to be the number of roots in @
which restrict to . Then the Dynkin diagram of G/K is the Dynkin
diagram of X with the nodes labelled by their multiplicities; if B is a
simple root such that 2f is also a root, the B-node is to be labelled by
(mg, myp). Again, see § 6 for examples; for the moment we just mention an
extreme case: If G/K has maximal rank—i.e. t,, = t—then Gy is the so-called
split real form of G.. The nodes of the Satake diagram are then all white,
with trivial involution, ® = X and m, = 1 for all a. For example, take
G = SU(n), o(4) = A, K = SO(n) and Gg = SL(n, R). (The opposite extreme
—all nodes on the Satake diagram black—corresponds to the compact
involution on G¢ (so ¢ | g=1), and will be ignored.)

For our purposes it is necessary to consider the extended Satake and
Dynkin diagrams. ‘We recall here that the extended Dynkin diagram of an
irreducible (reduced) root system is obtained formally by considering — o
as a simple root and adjoining a corresponding node to the ordinary
Dynkin diagram. (For us this definition is motivated by loop groups (§ 3),
but it has many other uses—for example, in the Borel-de Siebenthal
classification of maximal rank subgroups of G [3]). Now in view of (1.7)
it 1s clear that o, restricts to the highest root of X, and so in particular
restricts non-trivially. Hence the extended Satake diagram is obtained by
coloring the (—ag)-node white (and leaving it fixed under the involution,
for reasons which should become clear later). The extended Dynkin diagram
for G/K 1s obtained from the ordinary one by adjoining — o, and labelling
it by its multiplicity (20, 1s never a root).

Next, we will need the analogues of the subgroups G¢ , and G, in the
real form Gg. Let B be a simple root in X, and let I; be the subset of S
determined as follows (cf. [22], pp. 135-36): In the Satake diagram form the
subdiagram consisting of the black nodes and the set of white nodes that
correspond to P under restriction (there are either one or two such white
nodes). Then, in this subdiagram, take the path component that contains the
white node(s) (even when there are two white nodes, they lie in one
component). The nodes of the diagram obtained define the set I; of simple
roots in @. The subgroup GIB of G is preserved by o, as is its commutator
subgroup G’,B, and the fixed group K, = (G’Iﬁ)" 1s the desired analogue of
G,. Similarly, Gg j is the o-fixed group in (GC)IB. Note that we have
selected a sub—Satake diagram corresponding to the rank one symmetric
space GIB/KB-

~
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Examples. In the split case, identifying ® with X, we have GIB
= Gy = SU(2) and Ky = SO(2) for all B. For the usual involution on
SU@2n) with K = Sp(n), the subdiagrams obtained all have the form
P o ®, SO GIﬁ = SU(4) and K, = Sp(2) for all B (§6.1).

If B, is the highest root of %, K, (Go)g, are similarly defined, using the
extended Satake diagram.

Lattices are defined exactly as before, using t,, T, and X in place of
t, T, ®. The coroot, integral, and coweight lattices for M will be denoted
R,,I,,J,, respectively. In fact, in each case the lattice for M is obtained
by simply intersecting the corresponding lattice for G (in t) with t,. The
definition of the affine Weyl group VT/G, k., the Stiefel diagram, alcoves,
Cartan simplex A, etc. are exactly as above—indeed these depend only
on the root system X. In fact A,, = A nt,. Theorems (1.3) and (1.5) also
go through in the following form, for example.

(1.8) THEOREM. Let G be a simple compact Lie group with involution ©
and fixed group K as above. Then every element of M is K-conjugate
to an element of the form exp X, X eA,,. If G/K is simply-connected,
X is unique.

To state the analogue of (1.5), we need to determine Cgexp X for
X e(A,),. Here I is a subset of S~R—the set of simple roots of X. Clearly
Cxexp X = (Cgzexp)°. It follows easily that Cgexp X = (G;)°, where I
is obtained from I in the obvious way: In the extended Satake diagram,
I' corresponds to the black nodes together with all the white nodes that
“restrict” to the nodes of I. (For example, if- I is the empty set—i.e.,
X lies in the interior of the Cartan simplex A,, — I’ corresponds to the
black nodes and Cyg exp X = (G)® = Cgt,). Let K; = (G;.)°.

(L.9) THEOREM. Let G,o,K, be as in (1.8), with G/K = M simply-
connected, and regard M as a quotient space of K/Cgt, x A, via the map
(kCxT,,, X)— kexp X k™'. Then the equivalence relation on K/Cgt, x A,
is given by (k;, X) ~ (ky, X) if Xe(A,), and k, = k, mod K.

The final volley in our barrage of notation has to do with Weyl groups.
If (W,S) is any Coxeter system, and I is a subset of S, W, is the
subcoxeter system generated by I. Each coset wW, has a unique element X
of minimal length, and I(xy) = I(x) + I(y) for all ye W, (I(w) is the length
of w as a word in the elements of S). We let W! denote the set of such
minimal length elements. We also recall that W’ has a partial order—the
Bruhat order—defined by setting x < y if y has a reduced decomposition
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y = 51 = si(s5,€S) and x has a reduced decomposition obtained by deleting
some subset of the s’s occuring in y. (For a very nice account of these
related matters, see [14]). If W is finite, W has a unique element w,
of maximal length, we define the length of W to be l(wy).

_ § 2. ToprOLOGICAL BUILDINGS

A Tits system (G, B, N, S) consists of a group G, subgroups B and N,
and a set S, which satisfy the following axioms:

(21) Bn N is normal in N, and S is a set of involutions generating
~ W = N/Bn N,

(2.2) B and N generate G,

(2.3) IfseS, sBs # B,

(24) ifseS, we W, then sBw < BwB U BswB.

(The use of expressions such as sBw is a standard abuse of notation).

Example. Let G be a reductive algebraic group over an algebraically
closed field (e.g., GL(n, C)), let B be a Borel subgroup (e.g. upper triangular
matrices), and let N be the normalizer of a maximal torus (that lies in B).
This data determines a set S of simple reflections generating the Weyl
group W (e.g., the usual generators sy, ..., s,_; of X£,). Then one of the main
results in the structure theory of reductive groups is that (G, B, N, S) is a
Tits system (see for example [ 15]).

Throughout this paper we will assume that the set S 1s finite; its
cardinality [ is the rank of the system.
We next list some of the important properties of a Tits system.

(2.5) (Bruhat Decomposition) G :HWGWBWB (disjoint union),
(2.6) (W, S) is a Coxeter system.

A subgroup P of G is parabolic if it contains a conjugate of B. In par-
ticular if I = S, the subgroup P, generated by B and I is parabolic.

(2.7) (a) The parabolic subgroups containing B are precisely the P;, I < S.
No two of these are conjugate; in particular there are exactly 2' such
subgroups, which form a lattice isomorphic to the lattice of subsets of S.

(b) PI — BWIB

(c) Every parabolic P is self-normalizing: NoP = P.



QUILLEN’S THEOREM ON BUILDINGS 135

(2.8) (Bruhat decomposition, general version) G =HW€WI\W,WJ P,wP, (dis-
joint union).

The next result, which we will refer to as the Steinberg Lemma, is somewhat
technical; however it is not hard to prove and is extremely useful. It is a
mild generalization of Theorem 15 of [32] and Proposition 3.1 of [19].

(2.9) Let I = S and suppose w is the unique element of minimal length
of wW,. Suppose w = w; ... Wy where I[(w) = [(w,) + ... + [(w,). Then

(a) If Y, is any subset of Bw;B such that Y, - Bw;B/B is bijective
(resp. surjective) (1<i<k), then Y, x Y, .. x Y, - BwP,/P; is bijective
(resp. surjective).

(b) Suppose w;eS, 1 <i<k ie, w;..w, is a reduced decompo-
sition of w). Let Z,, 1 <i<k be any subset containing 1 of P,,
such that Z; — P, /B is surjective. Then the image of Z; x =~ Z; — G/P,
isI 1 <, BxP,/P,.

The maps in (a), (b) are the obvious multiplication/projection maps.
Part b refers to the Bruhat order on W’

(2.10) Remark. The Tits system of a reductive algebraic group has several
additional features: B = HU, where H is a maximal torus and U is a
normal unipotent subgroup, U in turn is described in terms of its root
subgroups, and there is an “opposite” Borel subgroup B~ such that
B n B~ = H. This additional structure can also be axiomatized in an
elegant way, leading to the “refined” Tits system of Kac and Peterson [19].
One then obtains, for example, the Birkhoff decomposition G =HW€WB_WB
as a consequence of the axioms.

We now define a topological Tits system to be a Tits system such that G
is a topological group, B and N are closed subgroups, and W is discrete
(le. NnB is an open subgroup of N). We will usually also assume (for
reasons which will be apparent shortly):

(2.11) Axiom. 1If I is a proper subset of S, W, is finite.

This axiom is satisfied if W is an irreducible affine Weyl group, or finite.
To get any interesting results some further axiom seems necessary. One
direction is considered in [11], where the groups in question are algebraic
groups over local fields, with the valuation topology. Here, with loop groups
in mind, the following axiom seems efficient:

(212)  Axiom. For each seS there is a subset A4, of P, such that

(a) AB = P, (b) A, is compact and contains 1, and (c) A, = A, N BsB.
This axiom is motivated by Steinberg’s approach [32].
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(2.13) ProrosiTION. Let (G, B, N, S) be a topological Tits system satisfying
(2.12). Then

(@) BwB =L1__ ,BxBweW). More generally if 1<S, and we WY,
BwP, =11 ., BxP, (here xeW!),

(b) B-orbitsin G/P; are locally closed,

(c) If W satisfies (2.11), parabolic subgroups are closed.

Proof. First we show P, = BsB. Since P; = A.B, with A, compact and

B closed, P, is closed, so P; > BsB. But also B « P, = A,B — BsB, which
proves our claim. Part (a) now follows easily from the Steinberg lemma:
Let M, :HmwaPl, and let w = s, 5, be a reduced decomposition.
Then M, = A, -~ A,P; and hence is closed. Next, suppose x < w; we must
show BxB < BwB. It is enough to consider the case when X has a reduced
decomposition x = §; = §; = 5, (omit s;). Then

BxP, = A = A} Aipq =~ A}Pp < AY "'Ai-—v‘Ii « A}P, < BwP;

(since 1€d,), where A; = A; n Bs;B. This proves (a). Part (b) is immediate
since the complement of BwP; in its closure is a finite union of sets
of the form M., hence is closed. Since P, = BW;B, (c) is also immediate
from (a).if W, is finite. H

From now on we will assume 2.11 and 2.12. The homogeneous spaces
G/P; will be called flag spaces. The B-orbits E, = BwP,/P; are Schubert

strata and the compact subspaces E are Schubert subspaces.

We next consider the building % associated to a topological Tits system
(G, B, N, S). (The notation is ambiguous—indeed in the case of loop groups,
G will support two natural but totally different Tits system. However the
system we have in mind will be clear from the context.) In the discrete
case, % is usually defined as the following simplicial complex. The vertices

are the maximal (proper) parabolics, and P, - P, span a simplex if
k
ﬂi: P contains a conjugate of B. In general it is convenient to reinterpret

this definition as follows: first of all, by definition every parabolic P is
conjugate to a unique P;; we say that P has type I. Thus the maximal
parabolics are the parabolics of type [s], where [s] = S — {s}. More
generally the k-simplices correspond to the parabolics of type I, where
|I| = [ — k — 1. Thus the simplices all have dimension < [ — 1, with the
| — 1 simplices corresponding to the conjugates of B. Furthermore, in view
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of 2.7 (c), the set of parabolics of type I is canonically identified with
G/P; — xP; corresponding to xP;x~'. One can casily check that with this
interpretation, a simplex xP; is a face of a simplex yP; if and only if
[ > J and xP; = yP,. In particular, every simplex is a face of some [ — 1
simplex. Hence, as a set, B; can be identified with G/B x A/~, where A
is the [ — 1 simplex with vertex set S, and (g9,B, X ) ~ (g,B, X)) if
X, =X = X,,XeA,, and g,P; = g,P,. (Here A; is the face of A corres-
ponding to I<S.) We will therefore define the building 4, associated to the
topological Tits system (G, B, N, S) to be G/B x A modulo this equivalence
relation, with the quotient topology.

Remark. Another way of expressing this is as follows: Let C be the
category defined by the poset of proper subsets of S (including the empty set).
We have a functor from C to topological spaces given by I+ G/P;.
Then %, is precisely the homotopy colimit of this diagram of spaces, in
the sense of [8], p. 327 ff.

(2.14) PROPOSITION. The equivalence relation on G/B x A'™' is generated
by the relations (g,B, X) ~ (9B, X) if X lies on the wall A; and
glps = QZPS'

Proof. In the usual language, (2.14) is the assertion that any two chambers
are linked by a “gallery”. (See e.g. [11], appendix.) Since the action of G
on G/B induces a well defined action on %;, we are reduced to showing
that if (B, X) ~ (gB, X)—i.e. X € A; and g € P,—then (B, X) and (9B, X)
are linked by a sequence of relations of the stated type. But gB = bwB
with we W,; hence if w = s, = s, is a reduced decomposition, the elements
(B, X), (bs;B, X), (bs;s,B, X), ... (bwB, X) provide the desired sequence. H

Note that the set A is a fundamental domain for the action of G on
%;. On the other hand, it is easy to check that the closed subspace %y,
consisting of the pairs (wB, X),we W, is a fundamental domain for the
B action. (The point is that if bw;P; = w,P;, then w,P; = w,P,, by the
Bruhat decomposition.) This space %y, which we will call the foundation
of the building, is a simplicial complex since W is discrete. Since it will turn

out that %, is in a sense a “thickening” of the foundation, the following well
known description of %4y, may be of interest.
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(2.15) PROPOSITION. Suppose @© is an irreducible root system in the
Euclidean space V. Then

(@) If W is the affine Weyl group associated to @, then By is
isomorphic as a simplicial W-complex to V (triangulated by the hyperplanes
of @).

(b) If W is the Weyl group of ®, %y is isomorphic as simplicial
W-complex to the unit sphere of V, triangulated by the Weyl chambers.
More precisely, %y can be identified with the W orbit of the outer wall
of the Cartan simplex.

Proof. For (a), map W x A SN % by identifying A with the Cartan
simplex in ¥V and using the action map. Then ¢ is onto (1.1) and further-
more ¢(w,,x) = @(w,, X,) if and only if X; = X = X,,XeA;, and
w; = w, modulo the isotropy group of X. But this isotropy group is
precisely W, (1.2), so ¢ factors through the desired isomorphism %, — V.
The proof of (b) is similar. ]

We now come to the main result of this section. Filter G/B by
FuG/B) =11,., < E,,. Similarly, % is filtered by Fi(%s) = Fi(G/B) x A/~.

(2.16) THEOREM. Let (G, B, N,S) be a topological Tits system which either
is discrete or satisfies (2.11) and (2.12). Assume also that the inclusions
F(Bs) = F,,(Bg) are cofibrations. Then

(a) If W isinfinite, A is contractible.

(b) If W is finite of length r, B is homotopy equivalent to the
(1—1) st suspension S'~' A (F,(G/B))/F,-(G/B)).

Remark. If G 1s discrete, F,%; is a subcomplex of the simplicial
complex %, so the cofibration hypothesis is automatically satisfied. Further-
more if W is finite the smash product in (b) is just a wedge of | F,G/B
— F,_,G/B | (I—1)-spheres. This case 1s due to Solomon and Tits; cf. [11].

Proof of (2.16). Let X, denote F\%B;/F, | %B;, and let X, = F,(G/B)/
F,_(G/B). Then we will show

(2.17) If k is less than the length of W, X, is contractible. If k = r
= length of W, X is homeomorphic to (F,(G/B)/F,_ (G/B)AS'™1).
If W is infinite, it follows that F, %, is contractible for all k, and hence
A is contractible. If W is finite, part (b) of the theorem is also immediate.
To prove 2.17, first consider the quotient map m: Fi(G/B) x A — X,.
In fact © is merely collapsing a subspace to a point:

-
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(2.18) Let Al = (blwlB, Xl), A2 == (szzB, Xz). If TC(Al) — TC(Az), then
either A, = A, or n(4,) = m(A,) = = (*is the basepoint Fy_Bg).

For suppose m(A,) # * and X; = A,. Then I(w;) = k and w, € W1 This
forces X; = X, and w; = wymod W;; hence w; = w, since [(w,) < k
by assumption. Then b,w,P; = b,w,;P;. But whenever we w! b,wP,
= b,wP,; implies b,wB = b,wB (easy exercise). ~

It now follows that X, = V=X, , where X,, is the image of E, x A
in X,, and to prove (2.17) we need only consider a fixed X,,. Let
X', = E,(E,—E,), and let A" be the subcomplex of A consisting of the
walls A, such that [(ws) < [(w). Then (2.18) implies:

219) X, = X, A (A/A).

For X, is E, x A modulo the subspace of points which are equivalent
(in %;) to a point of lower filtration, namely, E, x AU E,— E, x A.
It remains to identify A’. Since F,%; = A is contractible, we may assume
k> 1; then A’ is nonempty. If k < [(W), then there is at least one
se S such that [(ws) > [(w); hence A’ is not the entire boundary of A
and A/A’ is contractible. If k = [(W), then w is unique, A" = boundary of

A, and A/A" = S'”!'. This completes the proof of (2.17), and of the
theorem. ]

Remark. Our proof of Theorem 2.16 is an adaptation of the standard
(discrete) proof to the topological setting. Much of the proof depends only
on the Weyl group W, and indeed shows e.g. for W infinite that the
foundation of the building is contractible. In fact the deformation of
F(%y) into F,_,(%y) has the property that the isotropy group in B of a
point X in %, is an increasing function of time, and hence extends
uniquely to a B-equivariant deformation of Fy(Bg). In the discrete case this
extension is automatically continuous, and shows that Theorem (2.16) holds
B-equivariantly. (This was observed, (not for the first time) in [21], and has
an interesting application concerning the Steinberg representation of a finite
Chevalley group.) However this proof does not work in the topological
case; simple counterexamples show that the extension will be discontinuous.

In many cases the Bruhat decomposition of G/P is in fact a CW
decomposition. The following axioms are convenient in this regard:

(220) Axiom. For each s e S, the projection P, — P /B has a local section.

(221) Axiom. For each se S, Py/B is homeomorphic to a sphere of positive
dimension.

We then have:



140 S. A. MITCHELL

(2.22) THEOREM. Let (G, B, N,S) be a topological Tits system satisfying
axioms 2.11, 2.20 and 2.21. Let P = P; be a parabolic subgroup, I < S,
and give G/P the compactly generated topology. Then

(a) Axiom 2.12 is satisfied.

(b) The Bruhat decomposition of G/P isa CW decomposition, and the
closure relations on the cells are given by the Bruhat order on WY

(c) The building % satisfies the cofibration condition of Theorem 2.16.

Proof. By assumption there are maps D™ 5 P /B such that ¢ (B)
= D™ and D™9/0D™) — P /B is a homeomorphism. Furthermore o,
lifts to a map ¢,: D™ — P, with 1 e @(0D™"). Thus, in Axiom (2.12) we
may take A, = ¢(D™), proving (a). Since P is closed (2.13c), G/P is a
Hausdorff space. If we W' has reduced decomposition w = s; = s;, the
Steinberg lemma (2.9) shows that the multiplication map D™¢? x . x D™
— E,, (using ®,,) is a characteristic map for the cell E,. The boundary
of each cell is a finite union of cells of lower dimension by 2.13a, and
G/P has the weak topology by assumption. The closure relations also follow
from (2.13). This proves (b). For (c) we observe that %; (with the com-
pactly generated topology) is itself a CW-complex, and the filtrations
F.%; are subcomplexes: Indeed if we regard %, as a quotient space of
sts(G/PIXAI)’ it 1s clear that there is one cell for each I < S and
we W ]

If G, P; are as in the above theorem, and we W' has reduced decom-
position w = s; = s, let n(w) = n(s;) + = + n(s,). Thus n(w) = dim E,, and
so in particular is independent of the choice of reduced decomposition. Now
whenever a space has a locally finite cell decomposition, we have a cell
series Y. a;t', where g; is the number of cells of dimension i. We then have:

(2.23) COROLLARY. G/P; admits a CW—decomposition with cell series
. Z trw) ]
weWl

Note also:

(2.24) CoroLLARY. If W is finite with maximal length element wy, %q
is a sphere of dimension n(w,) + [ — 1. ]

We conclude this section with two “classical” examples. Let G be a
semisimple compact Lie group and consider the Tits system (G, B, N, S),
where B is a Borel subgroup, etc. First we claim that this is a topological
Tits system satisfying all four of our axioms. Since W is finite, (2.11) is
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trivially satisfied. In (2.12) we can take A, to be the “little SU(2)” (or
PSU(2)) G, (P, has Iwasawa decomposition P,=GB). In any case there is
a commutative diagram

G, — P

! l
CP' = G/G,n T = P/B

which proves (2.20), (2.21), and hence (2.12) simultaneously. The Bruhat
decomposition of G¢/P;, P; parabolic, is then the classical Schubert cell
decomposition of the flag variety G¢/P,. We have n(s) = 2 for all s, so
n(w) = 2I(w) for all we W' In particular the associated building %, is
a sphere of dimension 2/(w,) + | — 1 (since I(w), is the number of positive
roots, this is exactly dim G—1).

The second example (which is a generalization of the first) involves
symmetric spaces G/K and the associated semisimple real Lie group Gg
as in § 1. Thus Gg is the fixed group of the involution ¢ on G¢. Now ©
need not preserve the Borel subgroup B of G¢, but it does preserve the
parabolic Q associated to the black nodes of the Satake diagram. We will
write Bg, Ng, Wg, Sg for Q% Ngt,., Wek, Se/x» respectively.

(2.25) THEOREM. (Gg, Bg, Ny, Sg) is a topological Tits system satisfying
the four axioms. L]

A proof that this is a Tits system can be found in [33]. The parabolic
subgroups of Ggi are related in an obvious way to those of G¢: Given
I = Sg, let I' be the corresponding set in S (see §1). We denote by
C, the parabolic in Gg generated by Bg and I. Then O; = (P;)°. (Bg
is usually called a “minimal parabolic”, but this terminology conflicts with
our use of the term. From the point of view of Tits systems, it is precisely
analogous to the Borel subgroup of G.—although in general it is neither
solvable nor connected.) The rest of the theorem is also easily deduced
from [33]; the details will be omitted, but see § 5. The main point is that
for the minimal parabolics ;, (,/Bg is a sphere of dimension n;.

As for the building, one can deduce from (2.24) that it is a sphere whose
dimension is dim G/K — 1. However it is an interesting fact, that does not
seem to appear in the literature, that the building can be canonically
identified with the “tangent cut locus” of G/K: first recall (cf. [10], [20])
thatif M is a compact Riemannian manifold and p is a fixed point of M, a point
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x 18 a cut point (with respect to p) if there is a geodesic from p to x
that minimizes arc length up to x but no further. The cut locus is the set
of cut points. Similarly a vector X in the tangent space T, is a tangent
cut point if exp,X is a cut point along the geodesic exp,(tX). The tangent
cut locus 1s the set of all such points in T,, and is homeomorphic to the
unit sphere in T,. When M = G/K we take p = 1.

(2.26) THEOREM. Let G/K be a simply-connected symmetric space, with G
simple. Then the tangent cut locus is precisely the K-orbit in m of the outer
wall of the Cartan simplex A,,. It is therefore canonically identified with the
topological building of the associated real form Gyg.

As usual, the assumption G simple is just for convenience. We sketch
the proof: the first assertion is a fairly easy consequence of Theorem (1.8),
and is left to the reader. Now consider the building % . It is a quotient
space of Gg/Bg x Ay = K/Cgt,, X Ay, where A, is a simplex of dimension
(rank G/K)-1; we take A, to be the outer wall of A,,. For each
I <S¢k, let A; temporarily denote the corresponding face of Ag; i.e.
{XelAy:afx) = O0Viel}. Then the K-orbit of A, in m, KA,, is also a
quotient of K/Cgty, x A,. The relations are (k;X) ~ (k,X) if X € A, and
k, = k, mod K,. But K; = K n O, so these relations are identical to the
ones that define the building. ]

§ 3. Loor GRrours

Let LG, LG, denote the free loop spaces. Let G denote the group
of loops which are restrictions of regular maps C* — G¢, and let L,,G
= Ly,Gc n LG. Thus if we fix an embedding G = GL(n, C), L,,,G consists
of the loops f in LG admitting a finite Laurent expansion f(z) = Z:l: _mAkz",
whereas L,,G¢ consists of the loops f in LG¢ such that both f and
£~ admit finite Laurent expansions. We will also write GC for L,,Gc.
In fact éc is the group of points over C[z, z~'] of the algebraic group
Gc. Its Lie algebra is the loop algebra gc of regular maps C* — g.. The
integer m in the above Laurent expansion defines a filtration of G by
finite dimensional subspaces; we give G the corresponding weak topology.

Let P denote the subgroup of GC consisting of regular maps C — G
(ie. maps with nonnegative Laurent expansion, or G¢rp)» and let B denote
the Iwahori subgroup: {f € P: f(0) € B™ }. Finally, let N = L, ;N¢, and recall
that W can be regarded as a “subgroup” of @C, since R < Hom (S?, T)
< L,,T. More precisely, we have N [Te = W,and W = W.
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The affine root system ® is the set Z x ®. It can be thought of as a
set of affine linear functionals on ¢, but for our purposes it is just a device
for encoding combinatorial information about the affine Weyl group and
Gc. In particular, to each (n, o) € ® we associate a root subalgebra X, ,
of ge consisting of the regular maps C* — X, homogeneous of degree n.
These subalgebras are one—dimensional, and are precisely the nontrivial
eigenspaces of the following T'*! action: The constant loops T* act in the
obvious way, and the extra S' factor acts by rotating the loops. We also
have root subgroups U, , = exp X, , GC One can easily check that W
(actmg by left conjugation) permutes the root subgroups. The resulting action
of W on @ is given by (Wh) - (n, o) = (n+ o)), war) for A € hom (S*, T), we W.
The various additional structures associated with ordinary root systems can
be defined here as well. The positive roots ®* are the (n,) with n > 1
or n = 0 and o < O (note these correspond to the Iwahori subgroup E);
the remaining roots are negative. As in the finite case, the length of an
element o in W is equal to the number of positive roots taken to negative
roots by o (in particular this latter number is finite, as is clear anyway
from the above formula for the W action). The simple affine roots are
defined as the set of elements of ®* which are indecomposable with respect to
addition: (m, o) + (n, B) = (m+n, a+P) (if o+ P is a root). Hence the simple
roots are (0, —a), = (0, —oy) and (1, o).

To each root (n, o), we can also associate a “little SL,” subgroup
generated by U,, and U_, _,. In particular GC ; 1s the subgroup cor-
respondmg to the ith simple affine root, 0 < i < I. Thus GC ; = GC J1f i # 0,
and GC,O corresponds to (1, a,). For example if G = SU(2), GC,O is the

~

. b , ~
subgroup of matrices ( a_l dz) with ad — bc = 1. We let G, = G ; n LG.
cz '

Again G; = G, if i # 0. Note that for all i, evaluation at z = 1 gives an
isomorphism G; 5 G; & SU(2).

(3.1) THEQREM. Assume G is simply-connected. Then (C~?C,I§, ﬁ, ~) is a
topological Tits system satisfying the four axioms of § 2.

Proof. That (GC,E, N, §) is a Tits system in the ordinary sense is
essentially due to Iwahori and Matsumoto [16]. (They work over a complete
local field K; here we take K to be the field of infinite Laurent series
bounded below. It is not hard to get from the Chevalley group G, to
Gz, z-1y = GC .) See also Kac and Peterson [17].

Clearly B and N are closed subgroups and W is discrete. For Axiom
(2.11) we need to show that if W is an irreducible affine Weyl group,



144 S. A. MITCHELL

and [ is a proper subset of S, then VT/I 1s finite. This is obvious since
the elements of I have a common fixed point (i.e. the intersection of the
correspondmg reflection hyperplanes is nonempty) In Axiom (2.12) we take
A, = G,. We have G B = GC B=B U sB = P,. In particular P,/B

G,/(G,nB) = SU(2)/T = CP!, which also proves Axioms (2.20) and

(2.21). ]

(3.2) CoroLLARY. Q.G is a CW-complex with cells of even dimension,
indexed by Hom (S*, T). The Poincaré series for its integral homology is

alg

ZXGHom(sl T)tZI(X)’ where lb») is the minimal length accuring in AW.

Identifying Hom (S*, T) with WS, the closure relations on the cells are given
by the Bruhat order on W?5. N

Remark. An explicit formula for I[(\) is given in [16], Prop. 1.25:
= (s ol — [ {o > 0:a(d) > 0} .
We will also need the “Iwasawa decomposition” (see [17], [27], [29]):

(3.3) THEOREM. 5C = Q,,G x P. ]

Remark. Note that (3.3) shows that the associated building, which we will
be denoted simply by %4, is a quotient of L,,G/T x A. The equivalence
relation is then (f,T,X) ~ (f,T, X) if Xe A, and f, = f, mod LG n P,.

§4. QUILLEN’S THEOREM FOR Loop GROUPS
In this section we will give Quillen’s proof of the following theorem.

(4.1) THEOREM. Let G be a compact Lie group. Then the inclusion

Q,,G — QG is a homotopy equivalence.

If G is simply connected, let 4 denote the topological building associated
to the algebraic loop group L,,G¢ as in § 2.

(4.2) THEOREM (Quillen). Q,,G acts freely on s, with orbit space G.

Proof of (4.1). It is easy to reduce to the case when G is simply
connected. Since Bg; is contractible by Theorem 2.16, we conclude at once
from Theorem (4.2) that Q,,G — QG is a weak equivalence. Since both
spaces have the homotopy type of a CW-complex, the map is in fact a
homotopy equivalence. N

e
~
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Since G is a product of simple groups (as is Gg¢), it is very easy to
reduce to the case when G is simple. For the rest of this section, then,
we assume G is simple and simply-connected, of rank .

To prove 4.2, we introduce Quillen’s space of special paths & : this
is the space of all paths [0,1] - G of the form f(e*™)exp tX, where
feQ,,G and X eg. & is topologized as a quotient of Q,,G x g. Note
that L,,,G acts on & by h+(f exp tX) = hf exp tXh(1)~'. The following key
lemma, whose proof is deferred, also helps to explain the significance of the
parabolic subgroups P;.

(43) LemMMA. Suppose X e€A,, then the isotropy group of exptX s
Lu,G Py,

(4.4) TueoreM (Quillen). &, is L,,G-equivariantly homeomorphic to the
building % .

Proof. The action map ¢: L,;,G x A - & given by

o(f, X) = fexptX f(1)™*

is surjective by Theorem 1.1. If o(f;, X;) = o(f,, X,), then (evaluating at
=1) exp X, and exp X, are conjugate in G, so X; = X, by Theorem 1.3.
We then have o(f;, X) = ¢(f,, X) if and only if f; = f, mod the isotropy
group of exptX. Hence, by (4.3), ¢ factors through the desired homeo-
morphism %, » S;. O

Remark. Here we have used the Iwasawa decomposition (3.3) to identify
B = (Go/B x A)/~ with (L,,G/T x A)/~.

~

(4.5) Lemma. L,,G n P; is generated by T and the subgroups G;,ie I

Proof. We have P, = BWIB By the Steinberg lemma (2. 9) each
BwB(weWI) has the form XB, where X is a product of the G Since
Ly,G n XB = XT, the lemma follows. O

Proof of 4.2. The action of Q.,G on F; is clearly free. By (4. 4), the
same is true for %;. Now consider the orbit space %/Q,,G. Since

= (LagG/T x A)/~ = (Q,,G x G/T x A)/ ~, the orbit space is a quotient of
G/ T x A. The equivalence relation is given by (9,T, X) ~ (9,T, X) if X € A,
and g, = fg, p with f€Q.,G, peP;. In fact pe LG n P,. Now let
G, = = ¢(LGNP)), where e is evaluation at z = 1. Then 91T, X) ~ (g,T, X)
if and only if g, = g, mod G,. For if g2 = f g, p as above, then
G, = e(L,,GNP;), where e is evaluation at z = 1. Then 9.7, X) ~ (g,T, X)
if and only if g, = g, mod G,. For if g, = fgyp as above, then
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g, = f gy p(l), and conversely if g, = g, p(1), then g, = f g, p, where
f =g,p tgrt. But by (45), G, = G, (see § 1). In other words, the equi-
valence relation here coincides with the classical relation of Theorem 1.5,
which has quotient G. ]

Proof of 4.3. Fix X € A,. We first show that L,,G n P; fixes exp tX in
Z - By (4.5) it is enough to show that each G,(iel) fixes

exp tX: f(e*™exptX f(1)™! = exp tX.

If i #0, G~,- = (; 1s a subgroup of the constant loops, so f is a constant
g € G;. The desired equation is then equivalent to g+ X = X (recall that
g+ X = Ad(g)X). But since i # 0, o;(X) = 0, so this is true by definition.
Now suppose i = 0, so that X lies on the outer wall: ay(X) = 1. Then

1
X =

5 oy + Y, where o = 20,/% * %o 18 the coroot of o, and ay(Y) = O.

The equation we want can be written (f e@o):
f(e®™) = exptX f(1)exp —tX

Since f(1) e Gy, f(1)- Y = Y, and our equation simplifies to
2mit 1 * 1 %k
f(e™) = exp 5“0 f(Wexp| — imo

Note this is now an equation in the path space of G,. Identifying G,
with SU(2), it can be written

a be2nit 3 enit O a b e~ nit 0
ce” 2nit d - 0 e—nit c d 0 enit

Where <a

b
d>ESU(2)' This last equation is obviously correct, and we
g

conclude that L,,G n P; fixes exp tX.

Conversely, suppose

fexptXf(1) ™ =exptX, or f =expiX f(1)exp(—tX).

Then f(1)e C;exp X = Gy, and hence f(1) = h(1) for some he L,,G N P;.
But then h = exp tXh(l)exp —tX = f.

A useful fact that follows from all this 1s:
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(4.6) THEOREM. Evaluation at 1 induces an isomorphism L,,G N Py = Gy.
In particular, L,,G n Py is a compact Lie group.

Proof. We have seen that e maps L,,G n P; onto G;. The kernel is
G n P;. But Q,,G acts freely on &;, and L,,G n P, fixes A;, so
G M PI = {1}.

Q
Q

alg

alg

Remark. As always, I is a proper subset of S in (4.6). Of course (4.6)
also depends on our assumption that G is simple. Its discrete analogue is the
fact that W, is finite if W is irreducible. (It may be helpful to consider
the “discrete” versions of all the results of this section. For example, the
discrete version of “Q, G acts freely on Bg” is “the coroot lattice
Hom (S*, T) acts freely on t (the foundation of #;)”; of course the latter
assertion is trivial).

Note that we have shown that &;/Q,,G = G, and in fact the orbit
map < — G 1s given by evaluation at t+ = 1. This can also be proved

directly. It reduces to the following interesting theorem, also observed by
Quillen.

(4.7) THEOREM. Suppose X,Yeqg and expX = exp Y. Then exptX
= f(e>™ exptY for some [ eQ,,G. - O

It is not hard to prove this directly—for example, it is enough to prove
it for G = U(n). Not surprisingly, however, it is also implicit in what we
have already one. First, one can reduce to the case when G is-simple and
simply-connected. Using (1.3), one can easily reduce further to the case
Xeld,, Yy = g+ Xforsomege G. Thenge Cszexp X = G;,s0g = h(l) with
heLyGn Pr.Leth = exptX gexp —tX; then he L,,G and f = hh(1)~*
i1s the desired loop.

§5. THE LoOPs ON A SYMMETRIC SPACE

We assume throughout this section that G is simple and simply—connected.
If ¢ is an involution on G with fixed group K, as usual, then K is
connected and G/K is simply—connected. The notations and conventions of
§ 1 and § 3 remain in force.

The loop space Q(G/K) is homotopy equivalent to the space of paths
in G that start at the identity and end in K. Now consider the involution
v on QG given by ©(f)(z) = o(f(z)). The fixed group (QG) is clearly
homeomorphic to our space of paths, since f €(QG) implies f(—1)e K.
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Henceforth we will always consider (QG)* in place of ((G/K). Note also
the definition of t extends to LG, LG, and even L,,G¢: for if f: C* - G¢
is a regular map, so is oo f o(z>z), since o is anti—complex on Gg.

(5.1) THeorReM (Quillen). The inclusion (Q,,G)* — (QG)* is a homotopy
equivalence.

We defer the proof to the end of this section.

Thus Q(G/K) can be thought of as a real form of Q,,Gc.. More
precisely, (L,,Go)* 1s a real form of L,,G¢, and ©(G/K) is a homogeneous
space of this real form. For clearly P (regular maps C—G¢) is invariant
under 1, so from (3.3) we obtain a corresponding “Iwasawa” decomposition.

(5.2) THEOREM. The multiplication map (Q,,G)* X P* — (L,;,Go)* is an
homeomorphism. L

On the other hand B is of course not t-invariant in general, since B
1s not o-invariant. However the parabolic subgroup Q corresponding to the
black nodes on the extended Satake diagram is clearly t-invariant; in fact
Q = Q x U” where U* = {f € P: f(0) = 1} (note U* is t-invariant). Now
consider N~C = L,y,Nc. Since o preserves N¢, T preserves ]\7C. Note
Hom (S*, T) is also t invariant and in fact if f € hom (S, T), tf = o(f(z)™ ).
It follows that (hom (S', T)) = hom(S%, Ty) = Ry It is also easy to see
that N c N Q is normal in (N.:)T the quotient is WR Here we recall that
WR is the affine Weyl group associated to the restricted root system z;
it has a canonlcal set of Coxeter generators SR Write GR, BR, NR, for
(GC) Q ¢, respectively.

(5.3) THEOREM. (G~R, ER, ﬁR, 5~'R) is a topological Tits system satisfying the
four axioms (2.11), (2.12), (2.20) and (2.21).

Before giving the proof, we discuss some corollaries. If I < §R, we let
QI denote the parabolic subgroup P, of GC; here I’ consists of the black
nodes of the extend ended Satake diagram together with the white nodes
that correspond under restriction to elements of I (for example, Q Q¢)
Then QI is 1-invariant and the parabohc subgroups (containing Q‘) are
precisely the subgroups Q 7. Let O = Q 7. The proof of (5.3) will show that
for the minimal parabolics 0, se SR, S/BR is sphere of dimension
n(s) = m(o,) + m(2ons)' (here the multiplicity m(2o) i1s of course zero if 2a
is not a root). If s;..s, is a reduced decomposition of we W’ let
nw) = n(sy) + = + n(sy).

A
o
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(5.4) COROLLARY. -The Bruhat decomposition of éR/@ ; isa CW decom-
position, and the closure relations on the cells are given by the Bruhat order
on WL. Furthermore the cell series is Zweﬁrﬂ (), ]

(5.5 COROLLARY (Bott-Samelson). QG/K has the homotopy type of a CW-

complex with cell series Zweﬁ,{{ "™ where I = Sg. I

The cell series obtained by Bott and Samelson ([7], Corollary 3.10) is
described in terms of the diagram for t,, but can be shown to agree
with the one above (cf. [25] for the case of QG). Bott and Samelson
also showed that the cells they constructed are all cycles mod 2. Here,
reverting temporarily to the notation of §2, their result appears in the
following form.

(5.6) TueoreM. Let (G, B, N,S) be a topological Tits system satisfying
the four axioms, and let P be a parabolic subgroup. Then the Bruhat
cells of G/P are all cycles mod 2.

Proof. Let P = P;, I < S, and fix we W' Let s;..s, be a reduced
decomposition of w. If k = 1 then P, /B is a sphere and maps homeo-
morphically onto Esl by xB+-xP. Hence E, is an integral cycle. In
general, consider the space X, = P, x P, X p.. x g P_ /B, and let
w = 5;..8,. By assumption each projection P; — Py/B is a locally trivial
principal B-bundle, so the natural projection X,, — P, /B is a locally trivial
fibre bundle with fibre X .. Hence we conclude by induction on k that
X, 1s a topological manifold (not necessarily orientable). The fundamental
class in mod 2 homology is represented by the cell 4, x A4, .. x A, in
X, , where A; < P 1s chosen as in the proof of theorem 2.22, and by the
Steinberg lemma (2.9) this cell is carried homeomorphically onto E, under
the natural (multiplication) map X,, — G/P. This proves the theorem. ]

Returning to our standard notation, we have:

(5.7) CoroLLARY (Bott-Samelson). QG/K has mod 2 Poincaré series as
in (5.5). O

In general one could ask for a combinatorial formula describing the
differential in the cellular chain complex: d[E,] = Zﬁw a.[E,], where the
sum is over the x € W' that immediately precede w in the Bruhat order,
and satisfy n(x) + 1 = n(w). The problem is to determine the integers a,.
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Of course if the multiplicities m(a,), m(a,,) are all even, every cell is an
integral cycle. Here we recall that the multiplicities are all even if and only
if G/K is of “splitting rank” (not to be confused with the split form
mentioned earlier): that is, rank K + rank G/K = rank G. For example,
G itself, regarded as a symmetric space, is of splitting rank, as is
SU(2n)/Sp(n).

(5.8) CororLLArY. If G/K is of splitting rank, the integral homology of
QG/K is concentrated in even dimensions, and the Poincaré series is given by
the series of (5.5).

The “somewhat mysterious application...” of Bott-Samelson ([7], 4.1) is
quite transparent from the present point of view.

(5.9) THEOREM (Bott-Samelson). Suppose rank G/K = rank G (i.e., Gy
is the split real form of G¢). Then dim H (QG/K, Z/2) = d1m H, (QG; Z)2).
Hence the mod 2 Poincaré series of QG/K is 1_[ — ™)1 where
the m; are the exponents of G.

~

Proof. By assumptlon tw = t. It follows at once that t preserves B
and is the identity on W hence Tt preserves the Bruhat cells in GC/P
Furthermore, each cell is identified with a complex vector space in such a
way that t corresponds to a linear conjugation. Since every cell is a cycle
mod 2, this proves the theorem. (In more detail, o preserves the root
subalgebras X,, and of course acts anti-linearly. The same is true for t
acting on the X, ,, and hence (by definition) for t acting on the root
subgroups exp X, ,. In particular t acts by a conjugation on each Uy, s € S.
But every cell can be identified with a product of subgroups U,, by the
Steinberg lemma.) n

Remark. Bott and Samelson obtain similar results with Q(G/K) replaced
by suitable homogeneous spaces of K. For example, if rank G/K = rank G,
they show that dim H(K/C,t,,; Z/2) = dim H,,(G/T, Z/2). These results also
fit neatly into the present context, using the topological Tits system
(Gg, Br, Ng, Sg)- The points is that G/T = G¢/B, K/Ct,, = Gg/Bg, etc.

Proof of Theorem 5.3. Axiom (2.1) is easy and is left to the reader.
The proof of the remaining three axioms for an ordinary Tits system follows
a standard pattern and will only be sketched. The first step is to prove
the Bruhat decomposition directly. One way of doing this, which is of some
1ndependent interest, is sketched in § 8. Briefly, the argument is as follows.
The Q orbits in GC/Q are vector bundles over certain flag varieties, and
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T acts on each orbit as a conjugate linear bundle automorphlsm For the
orbit QwQ/Q this action is free on the base unless w e WR Furthermore,
if we WR then QwQ BwQ so the Bruhat cell BwQ/Q is t-invariant. The
Bruhat decomposition for GR then follows by taking t fixed points of the
Q Q double coset decomposition of GC In particular this proves that
BR, NR generate G Axiom (2.3) is easy. For (2. 4) we use induction
on [(w). The inductive step reduces to showing that sBR s S BR U BR sBR,
which in turn can be deduced from the Bruhat decomposition for rank one
groups (already proved). (Cf [33], Prop. 1.2.3.17, for the details of one
version of this argument.)

Axiom (2.11) is immediate since WR is an irreducible affine Weyl group
(see § 3). For the remaining axioms, we need to explicitly construct certain
subgroups IZL- (analogues of the “little SU(2)” subgroups in the loop group
case), where IZ corresponds to the ith simple root {3; of the affine restricted
root system ¥. When i # 0, K 1s the group of constant loops Ky already
constructed in § 1. K0 is constructed in the same way. Let I = S be the
subset formed by taking the union of the black nodes and the special node
—a, of the extended Satake diagram, and then taking the path component
of —oa, in this smaller diagram. Let GI = L,,G n P; (compare §4). Then
G, and its commutator subgroup G 7 are t-invariant subgroups and we define
K, = (G 7). Note that KO i1s a compact subgroup of GR; in fact evaluation
at 1 yields an embedding K0 — K. (Note however that KO does not consist
of K-valued loops.) The complexification of G 1s the subgroup G
generated by the root subgroups UL, i € I. Passing to t-fixed points we obtam
a semisimple real form GR o With K0 as maximal compact. The structure of
these groups is easily read off from the Satake diagram.

Example. Let G = SU(4), K = Sp(2), as in §1. Then S = (0, 1, 2, 3)
) . A
and I = (0,1, 3). The parabolic P; consists of all matrices <C _y ]ZZ>
z
in G¢ with 4, B, C, D 2 x 2 matrices over Cl[z]. GC, ; consists of the elements
of P, with A, B, C, D constant; note evaluation at one is in this case an

~

isomorphism onto the constant loops. In this example G, = G’, = SU4)
and IEO is the subgroup of matrices as above with (1(4; §>6Sp(2). In

particular IZO is isomorphic to Sp(2); note this in fact follows immediately
from the Satake diagram.

Now let ; be the minimal parabolic <I§R, S; ) < GR, as usual. In Axiom
(2.12) we take A, = K Certainly K is compact and contains 1, and since
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~

K, n BR 1S a subgroup of lower dimension, we have K = K, n BRSBR
The Iwasawa decomposition of GR, shows that KBR = GR BR Now
O; = Bg  Bgs;Bg, and By s;Bg = Uy ;5,Bg, where Uy ; corresponds to the
positive roots PB; and (if 2B, is a root) 2pB,. Since Ug,: < GR,, this
completes the proof of (2.12). Note 0l/§R = l/K mBR Since Uy ; 1is
homeomorphlc to a real vector space of dimension n; = my; + m,;;, and

l/BR i1s compact, we also conclude that (OL/BR is a sphere of dimension n;,
and that 0O, — (DL/BR has a local section. This completes the proof of
Theorem 5.3. ]

Now let %/ be the building associated to the topological Tits system
of (5.3). To prove Theorem 5.1, it is enough to show (as in § 4):

(54) TueoreM (Quillen). (Q,,G)" acts freely on Bgx, with orbit space
G/K.

Proof. Bgi 1s a quotient space of (Q,,G)" x K/Cgt, x A, where A is
the Cartan simplex in ty; (here we are using (5.2); note that (L,,G)" n P"
= G° = K). Hence the orbit space of the (€,,G)"-action is a quotient of
K/Cgt,, x A. As in the proof of (4.2), we see that the equivalence relation
here coincides with that of Theorem 1.9. Hence the orbit space is G/K,
as desired. To see that the action is free, we introduce the space of
special paths %4 path of the form f(e*™)exptX with f €(Q,,G) and
X e m. The proof now proceeds exactly as in (4.2); details are left to the
reader. []

The other results of § 4 also go through: ¥k is (L,,G)*—equivariantly
homeomorphic to the building %k, and if X, Y e m, exp X = exp Y implies
exp tX = f exptY, where f € (Q,,G)".

§ 6. EXAMPLES

In this section we discuss six examples, the first four of which arise
in the Bott periodicity theorems (§ 7). The first and last examples are
discussed in some detail, the others are only sketched.

(6.1) Q(SU(2n)/Sp(n)). This is perhaps the simplest nonsplit example. SU(2n)
has an involution o given by o(4) = JAJ !, where J is the matrix

0 —1I
(I 0 ) The fixed group K is Sp(n). The extension of ¢ to SL(2n, C)
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is given by the same formula, so the corresponding real form is SL(n, H)
= GL(n, H) n SL(2n, C). For convenience we now make the obvious change

. 0 —1
of basis transforming J into a direct sum of 2 x 2 matrices <1 0 )

ag
ag
In this basis t,; consists of the diagonal matrices a =

a

with the a; pure imaginary.

Hence Cytm = []) Sp(1), Ngtm = Y. [ Sp(1), and the relative Weyl
group Wy ¢ 1s Zn. The root systems are described as follows. In the usual
notation, the root system ® of SU(2n) consists of

(+(e—e) 1 <ij<2mi#j}.

Clearly @y = {+ (e;—¢;41):i0dd}. If aety is as above, let f(a) = a;.
Then the restricted root system X consists of {+ (fi— f;): 1 < i,j < n:i #j},
and so has type A,_;. Moreover it is clear that the multiplicities are all
equal to four. Thus the extended Satake diagram is

O 9 Oo—
Otl o‘2n |
and the extended Dynkin diagram is
—aio(4)
0(1 4 e L &y, — 1
4 4

Note that the parabolic subgroup Q (obtained from the black nodes of the
Satake diagram) is just the isotropy group of the standard flag C? = C* -
< C*"~% < C?". The corresponding “quasi-Borel” subgroup Q° (minimal
parabolic, in the standard terminology) is then the isotropy group of the
complete quaternionic flag H' < H*> - < H" (in SL(n, H)). The little K,
subgroups (0eX) are all Sp(2)’s.
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Now consider the involution t on L,,SL(2n, C) = SL(2n, C[z,z"']). If
f2) =Y A2 (tf) () = Y. JA,J 17 Hence the fixed group L(, is just
SL(n,H[z, z~1]). Since we know that the affine Weyl group W of type
A,_; has Py u(t) = H:=1 (1—t)~1, the extended Dynkin diagram above
shows immediately that QSU(2n)/Sp(n)) has torsion—free homology, with
Poincaré series H?:l (1—t*)~1. For more applications of this approach,

see [9] and § 7.

(6.2) Q(SO(2n)/U(n)). For convenience we take n = 2k, k = 2. Let J be as
in (6.1) and define o(4) = JAJ ™ '(4eSO(2n)). Then K = U(n), embedded as

B
—B A
Then t,, consists of matrices

the matrices < > Now make the same change of basis as in (6.1).

—a; : . -
where A, =< > Since the original root system ® consists of
al

{+ e te:1<ij<ni+#j}, where e; denotes projection on the ith
2 x 2 block in t, clearly > has type C, and consists of + (f;, — f;), + 2f;,
where f(A) = a;. We have ® = {+ (¢;+¢;4,):iodd} and Wg x = ) |3 .
The simple roots f; — f;,; have multiplicity 4, whereas 2 f; has multiplicity
one. Thus the extended Satake diagram is

Ook—1
%o Aok
and the extended Dynkin diagram is
ao Ol
o = o - &= o
1 4 4 1
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(Here the usual basis e;, —e,, e, — €3, €,_1 — €,,¢,-; + ¢, for ® has been
replaced by the basis

ey + ey, —Cy — €3,63 + €4, —€4 — €5, €y T €p,€h—1 — €y

In particular the highest root is now e; — e,).
(6.3) (Q(SU(n)/SO(n)). Here the involution on SU(n) is o(4) = A. Hence we
are in the split case and everything is transparent:

Gr = SL(n, R), (L, SL(n, C))' = SL(n, R[z, z~']), etc.

The Satake and Dynkin diagrams are just the Dynkin diagram for A,_;
(all Satake nodes white, all multiplicities equal one). For further details and
applications, see [9].

(6.4) (Q(Sp(n)/U(n)). Embed Sp(n) in SU(2n) as usual and define o(4) = A.
A B
The fixed group is U(n) embedded as matrices ( B A) with A4, B real.

Again we see that we are in the split case; the associated real form
Gg is Sp(n, R), L}, is Sp(n, R[z, z7 '], etc. The extended Dynkin diagram is

ao un
e = ® ® & ]
1 1 1 1

We can conclude e.g. that QSp(n)/U(n) has mod 2 Poincaré series
[1,_, @—¢*1) "' (cf. Theorem 5.9).

(6.5) QS". Assume n = 2k + 1; the case n even is similar. Define an
involution & on SO(2k+1) by o(4) = eA4e™*, where

1
Then K = S(O(1) x O(2k)) = O(2K), so K' = SO(2k). The corresponding real
from Gpg consists of matrices (a,ll A) in SOQ2k+1, C) with a,, and A4

real and the remaining entries pure imaginary. In fact (as in easily checked)
Gr = SO(1, 2k). The torus ty, is the set of matrices
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and hence the relative Weyl group has order 2

—1

(generated by ).

—_—

1

Using the usual notation for ®, ®, = {+ (e;—e;), + ¢,:1,j, k # 1}. Thus X
has type A, (no doubled roots) and the multiplicity of its one "ositive
root is 2k — 1. The extended Satake diagram is

— = °
Ol
and the extended Dynkin diagram is
- (XO o0 O(l
. °
2k—1 2k—1

(The symbol oo indicates that sys; has infinite order.) The groups
K,, K, are both SO(2k)’s. In particular we obtain a model for QS" with
one cell in each dimension of the form i(n—1).

(6.6) QCP" ! This example serves to illustrate two phenomena not en-
countered above: a nontrivial involution on the Satake diagram, and a
restricted root system which is not reduced. Take G = SU(n) and define
o(4) = eAe, where ¢ is as in (6.5. Thus K = S(U(1)x U(n—1)) and
G/K = CP" . The corresponding real form of SL(n, C) is denoted SU(1, n—1)

and is described as in (6.5): matrices <a,11 A) in SL(n, C) with a,,,

A real and the remaining entries pure imaginary. The torus t,, consists of
matrices
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O
O Q

0

with a pure imaginary. Here we are taking as Cartan subalgebra in
su(n) the matrices

S Q
Q o

Cn

Using this Cartan subalgebra, a simple system of roots oy, a,_; for @
is given by the following table: '

0l 2a + b — c;

o, —2a + ¢c3 — ¢4

O Ciri — Ciyy (3<i<n=2)
oy 1 b + c,

The highest root o, = o, + o, + ... + o,_, then takes the value 2b. The
action of o on these roots is given by o;— —;(2<i<n—2) and oo,
= 0, + o3 + = + a,_. Thus @, is the span of a,, - o, _,, and the extended
Satake diagram is

AN ol

Furthermore the restricted root system X has type BC; (type A, with
doubled root). Indeed if B is defined by

0 b
Bl b O = b,
0

we see that B has multiplicity 2n — 4 and 2B has multiplicity one
(2 restricts to 2f). Hence the extended Dynkin diagram is

—2B o0 B
o— -
1 2n—4,1
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Following the procedure discussed in §5, we have at once that Gy
is all of SU(n), so Kg = K = U(n—1). Note K/Cgty; = S*"7°. On the other
hand K,; = SO(2) (G, is the SU(2) in the upper left corner). From the
Dynkin diagram we conclude that our model for QCP"~! has one cell in
each of the dimensions 0, 1, 2n — 2,2n — 1,4n — 4, 4n — 3, ... in other words,
the cell series is (1+1) (1+t*"~2)~ 1. (Recall that the affine Weyl group of
type /Il is just the free product Z/2 = Z/2, so that the Bruhat cells are
indexed by 1, sq, 5;50, S0515¢, etc. By the above remarks, s, receives weight
one and s; weight 2n — 3, hence our formula.)

§7. BOTT PERIODICITY

Bott’s theorem, in its original form [6], is a general statement about
the range in which certain maps K/L AR QG/K are homotopy equivalences.
The periodicity theorems proper are then deduced from this, taking
G, K, L to be suitable classical groups. In this section we derive a version
of Bott’s theorem by showing that in many cases the map ¢ is a homeo-
morphism onto a Schubert subspace of ((G/K); then one merely counts
cells. In fact, in these cases we will be able to read off the desired range
directly from the Dynkin diagram of G/K.

We assume that G is simple and simply-connected. (As usual, the essential
point is that G/K is simply-connected; then we can if necessary replace G
by its universal cover.) Let A:[0,1] - G be a path of the form A(¢)
= exp tX, where X belongs to the coweight lattice J,. In otherwords,
X ety and exp X is central in G. Then for all ke K, the path o,
= AkAT' k™1 actually lies in (Q,,G)*; see the proof of 42. Hence A o,
defines a Bott map K/C A 2 (2,,6)" (=QG/K). Identifying J,, with the group
of paths A as above, the most interesting A are obviously the fundamental
coweights ¢; dual to the simple restricted roots B;: B;(g;) = 9;;(1<i,j<)).
Among these one may single out the very convenient class of miniscule
coweights. These are the g; dual to a miniscule root Pi-1.e. a simple root
which occurs with coefficient one in the highest root B,. The miniscule
coweights are precisely the nonzero elements of the coweight lattice which
are also vertices of the Cartan simplex. They exist whenever the root
system is reduced and not of type G,, F, or Eg; in terms of the Dynkin
diagram, they correspond to nodes on the ordinary diagram which are
conjugate to the special node —a, under an automorphism of the extended
diagram. Thus for example in type A, every simple root is miniscule,
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whereas the number of miniscule roots in types B,, C,, D,, E¢, E; 1s res-
pectively 1, 1, 3, 3, 1. Next, define the distance d(s;, s;) between two elements
of §R (or nodes on the extended Dynkin diagram of G/K) as follows.
Given a path p from s; to s; on the extended Dynkin diagram, let m,
be the sum of the multiplicities of the vertices of the path (including s;
and s;). Then d(s;,s;) is the minimal possible value of m, (p ranging
over all paths). For example, in the split case, with my; = 1 for all simple
restricted roots B, d(s;, s;) is just the minimal number of vertices in a path
linking s; to s;. (Arrows are ignored, and doubled or tripled edges in the
diagram are counted as single edges.) We may now state our version
of Bott’s theorem:

(7.1) THEOREM. Let ¢g; be a miniscule coweight of the restricted root system
X, and let @:K/Cge; » QG/K be the Bott map associated to &; .

Then @ is an isomorphism on homotopy groups in dimensions less than
d(sy, s;) — 1, and is an epimorphism in dimension d(s,, s;) — 1.

(7.2) CorOLLARY (Bott Periodicity). There exist Bott maps of the following
form, which are isomorphisms on homotopy through the indicated range of
dimensions:

(a) Sn 2 — QSU(2n) (2n)

(b) SO(4n)/U(2n) — Q,S0(4n) (4n—4)
(c) U(2n)/Sp(n) — QSO(4n)/U(2n) (4n—4)
(d) GY,., > QSU@4n)/Sp2n)  (4n+2)
(e) Sp(n)/U(n) — QSp(n) (2n)

(f) U(n)/O(n) — QSp(n)/SU(n) (n)

9) G2 = QSUQRR)/SO2n)  (n—1)

Proof of Corollary. We need only exhibit miniscule coweights ¢, such
that d(sy, s;)—2 is the number indicated and K/Cye; is as shown. We will
do this for (¢) and (d) and leave the rest of the fun to the reader
(see § 6). In case (d), we have seen that ¥ has type A4,—, and hence every
simple root is miniscule; we also know the multiplicities all equal four.
Taking ¢; = ¢,, we obviously have d(sy,s,) = 4n + 4. In case (c), £ has
type C,,; there is one miniscule root o,,. From (6.2) we compute

7

d(so, SZn) = 4n — 2 D

Proof of (7.1). The proof is an easy generalization of that of Pro-
positions 2.2 and 2.6 in [25] (note, however, that d(s,, s ;) 1s defined somewhat
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differently there). Therefore it will only be sketched. First of all, consider
the set of restricted roots B such that B(g) = 0. This set is spanned by the
set I of simple roots it contains, and if I’ is the corresponding set in S
(as usual), C4e =. Thus Cxe = (Csze)° = K;. Since K is a maximal compact
subgroup of the parabolic ¢,((=(P;)°), the Iwasawa decomposition ¢; = K,;Q
shows that K/Cge = Gg/0;. Since (Q,,) = G}/P‘, the Bott map can be
thought of as a map Gg/0; — GR/P'. To describe this map in terms of
Bruhat cells we need to alter it slightly. First, let y, = gw, where
w = wywo € Wg. Here Wy; denotes the maximal length element of W,
where [i] = Sg — {i}. (This definition is due to Iwahori and Matsumoto
[16], among other things it provides a splitting of the projection w
- W/W.) Then the map ¢': K/Cge — (L,,G)/K = (©,,G) given by
k> p; tky; is homotopic to ¢, since ¢ = w ¢ and K is connected.
Hence in the proof we may replace ¢ by ¢'. The point of this is:

(7.3) LEMMA.

(@) The map O: f— ;! fn, defines an automorphism of Gc pre-
serving Gg.

(b) ©: éR — éR preserves Q, and in fact permutes the simple roots
(defining an automorphism of the extended Dynkin diagram). In particular

i+ (1, Bo) = (0, —Py).
(©) ©|g, induces an embedding Gg/0; — G~R/P‘, which corresponds to
¢" and is a homeomorphism onto a Schubert subspace.

Remarks. In (a) we have identified éc with the group of paths:
[0, 1] = G¢ of the form f(e*™), where f:S' — G is algebraic. In (b), the
automorphism of the Dynkin diagram preserves multiplicities.

It remains to show that every cell not in the image of ¢ has dimension
at least d(s¢,s;). Now © preserves the simple reflections S~G/K, with
O(s;) = s, and clearly the cells which are in the image of ¢’ are precisely
the E,, such that we W5 and ©(s,) does not occur in a reduced expression
for w. Since every such expression must begin on the right with s,, a
moments reflection should convince the reader that the minimal dimension
of a cell involving @(s,) is d(sq, O(sy)). Since

d(s¢, O(se)) = d(®(so), So) = d(s0, S:)

this completes the proof. ]
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§ 8. APPENDIX: REAL FORMS
AND THE GENERALIZED BRUHAT DECOMPOSITION

Let G be a reductive complex algebraic group, as usual, and let
P = P;, Q = P, be parabolic subgroups. Let H¢ be “the” Levi factor of P
with maximal compact subgroup H. Explicitly, H is the (closed, connected)
subgroup whose Lie algebra is generated by tc and the X ,, ,ael. We
have P = H.U,;, where the unipotent radical U; corresponds to the positive
roots not in the span of I.

(8.1) THEOREM. The P-orbits in G¢/Q are holomorphic vector bundles
over fiag varieties of H.

Theorem (8.1) is certainly well known, although not so easy to find
in the literature. In this section we will prove (8.1) and its loop group
analogue in a more explicit forin, and show how one may easily deduce
the Bruhat decomposition for real forms from this. (The proofs of various
“technical lemmas about root systems will be omitted. The details are some-
what tedious, but not difficult.)

(8.2) LemMA. Each W;— W, double coset in W contains a unique
element w of minimal length. For such aw we have

@ {xeWpwlxweW,} = Wy, where K = {sel:w sweJ}.
(b) each xeW,w W, has a unique factorization of the form x = vwy,

with ve (Wp¥, ye W,. Furthermore l(vwy) = I(v) + l(w) + I(y), (in par-
ticular vw e WY). O

Let w be minimal as in (8.2), and let E = {he Hc:w ' hwe Q) (e,
E is the isotropy group of wQ in Hy).

(8.3) LeEmMMA. E is a parabolic subgroup of He, and its Levi factor
F¢ normalizes U, . ]

We recall here that U,, = {ue U:w 'uwe U~}. In the present situation
It 1s easy to see that U, < U;, and w 'U,w < U . The proof of (8.3)
then reduces to a simple calculation in the root system. Now form the
balanced product H, x ; U,,, where E acts on U, via the projection
E'— F¢. Since exp:u, — U, is an ad-equivariant isomorphism of varieties,
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He x g U, is an algebraic vector bundle over the flag variety H¢/E. Of
course we also have H¢/E = H/F and H¢ xz U, = H xy U, (by the
Iwasawa decomposition).

(84) THEOREM. The map @:H¢ xgpU, — PwQ/Q given by (h, u)
— huwQ/Q is an isomorphism of varieties.

Proof. Clearly ¢ is well—defined and surjective. To see that ¢ is injective,
note that the Bruhat decomposition of H¢/E lifts to a cell decomposition
of He x g U,; the cells are of the form (U,v) x (U,w), where v ranges over
(WX, By Lemma (8.2), the vw are distinct elements of W”, so ¢ maps
cells to Bruhat cells. Finally, (8.2) and the Steinberg lemma show that o
1s injective on each cell. ]

Example. . Let G¢ = GL(n,C),so W = } and S = (s;, = s,_) as usual.
Take I = J = S — {s;}, s0 G¢/Q is the Grassman manifold of k-planes in
n-space, and W; = ) x » . .The(I—I)-minimal elements are precisely the
shuffles o; defined by o(r) = r (if 1<r<i), ofr) = k +r — i(i+1<r<k);
here i < k and k — i < n — k. Note o, has length (k—i)%. The P(= Q)-orbit
of o; is {WeG,,:dim W n C* = i}, where C* is the span of the first k
basis vectors. This orbit can then be identified with the vector bundle
hom (Y, -k k-i> Yii.) over G ; X G, —; (y denoting the canonical bundle).

Now suppose given an involution ¢ on G¢ (in normal form) with
Gr = (G¢)°, etc. We take I corresponding to the black nodes on the Satake
diagram—i.e., I corresponds to the simple roots o such that ca = —a.
Also take I = J, so Q = P;. We have By = Q° (by definition) and
We = W°/W, (W, is usually denoted W,). Note that o preserves Q and
hence permutes the Q — Q double cosets.

(8.5) THEOREM.

(@ If weWen W! then QwQ = BwQ = U,wQ and o acts on
U, as a conjugate linear involution.

(b) If w¢ W° OwQ n Gg is empty.

(8.6) COROLLARY (Bruhat decomposition). Gy =11 BrwBg .
R

weW

Proof. Note that on H¢/C(H¢), o is the compact involution. In par-
ticular o is the identity on H/C(H); in fact H = (Ckt,,) (C(H)). It follows
that hwQ = wQ for h e H, and hence QwQ = UwQ = U,wQ. A calculation
with roots shows that o(U,) = U,,, and (a) follows. Now consider a fixed w
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of minimal length in W,wW,. To prove (b), we may as well assume
that o preserves QwQ; ie, o(w) = awb with a,be W,. We identify the
orbit OwQ with H x ; U,, as in Theorem (8.4).

(8.7) LEMMA.
(a) ae NyxF, and a is well defined mod F.
by a 'o(U,)a = U,. ]

It now follows that o acts as a conjugate linear bundle automorphism:
o(huwQ) = hzo(u)awQ = hzaw'Q = hazu'Q ,

where ' = a” 'o(u)a and ze C(H). Furthermore the action on the base
H/F is given by o(hF) = haF. Hence either o acts freely on the base,
and hence freely on the orbit, or else ae F. In the latter case oc(wWW))
= wW,. But it is a (trivial) exercise in linear algebra to show that this
implies o(w) = w. O

Example. Consider the involution o(A) = JAJ~' on SU(4), as in §6.
Q is the stabilizer of the standard 2-plane in C* and H = S(U(2) x U(2)).
The minimal length elements (with respect to I — I, where I = (s, S3))
are 1,s,, 5,5,5,5, (shuffles as in the preceding example). The corresponding
Q-orbits are ‘respectively a point, a line bundle over CP' x CP?, and a cell
of complex dimension four. The action of ¢ on CP' x CP! is the obvious
one on each factor, arising from the quaternionic “j” acting on complex
lines in H, and obviously is free. Taking fixed points yields the usual cell
decomposition of the 4-sphere HP*.

Now consider our algebraic loop group 50 For simplicity we consider
only parabolics Py, P; with I,J < S (ie. Py, P;<P=G¢,), although this is
not really necessary.

(8.8) THEOREM. The Pj-orbits in GC/PJ are holomorphic vector bundles
over flag varieties of Hc. ]

Here we note that although our notation is slightly ambiguous—in (8.8)
P, 1s a parabolic subgroup of éc, but it could also denote a parabolic
in Ge—the Levi factor H¢ is the same for either interpretation. In any
case the proof is identical to the proof of the classical case, with the affine

root system replacing the ordinary root system. In particular the analogues
of (8.2), (8.3), and (8.4) hold.
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Example. Consider the P-orbits of G¢/P = Q,,,G (G simply-connected).
These are indexed by homomorphisms A: S' — T that lie in the closure of
the dominant Weyl chamber (a(A) = 0 for all «ae ®*), and are precisely
the stable manifolds of the energy flow on QG ([28]). The Levi factor
H¢ 1s just G¢ in this case, so H = G, and PAP/P is a vector bundle
over G/Cgh. Now WAW = ., MW, where ~ means W-conjugate. Hence,
although A will not be minimal in WAW, the formula of Iwahori and
Matsunoto shows that the minimal element has the form Aw, and has
length Zue o+ UN) — {e > 0:a(}) # 0} |. Hence this length is the complex
dimension of the vector bundle in question, and one can even determine
the bundle explicitly. For example, suppose G = SU(n). Then A corresponds
to a sequence of integers (by,..,b,) with > b, = 0 and b, > b, .. = b,.
Write this sequence in the form (a,, a,, .. a,, a,), where there are i, entries
a,, i, entries a,, etc. Then G/C;\ is the flag variety U(n)/U(i;) x ... x U(i,).
Over this there are r canonical bundles &, of dimension i ; let &
= hom (§,, &) Now ) _ o) =) _ (%—a)ii, and [(2>0:a})#0)|
= ), ii;. This suggests that the bundle is @, (a,—a,—1) &, and indeed
this is easily verified. For the &, are precisely the irreducible components
of the adjoint action of C;A on the Lie algebra of the unipotent radical of the
corresponding parabolic (i.e. the Lie algebra spanned by the X, with
o > 0,,0(A) # 0). Then one can check that U,, corresponds to the strictly
positive roots (n, o) (i.e. n=1) such that A~ '+ (n, o) = (n—o(}), o) is strictly
negative (i.e. n—a(A) < —1). Furthermore since C4A consists of constant loops,
it preserves the sum of the root subalgebras of fixed height n. Hence each
£, (thought of as a representation of CgzA) occurs in U,,, with multiplicity
a, — a, — 1, which proves our assertion.

Finally, consider the involution ¢ on 6C. Theorem (8.5) and its proof
carry over without difficulty, and we obtain:

(8.9) THEOREM. GR =11

ey Bg wBg.
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