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GEODESICS IN THE UNIT TANGENT BUNDLE 235

The paper is organized into the following sections :

1. Geometry of the unit tangent bundle. We describe the metric in two

ways, and when the base space is a round sphere, we see that geodesies in
its unit tangent bundle project to spherical helices on the sphere.

2. Geodesies in US2. Some of the phenomena show up in this case.

3. Helices in S3. Frenet equations, curvature, torsion and writhe.

4. Sasaki s equations. A general calculus for geodesies in the unit tangent
bundle UM of any Riemannian manifold M.

5. Proof of the Fundamental Constraint. A blend of the Sasaki and Frenet

equations.

I am grateful to Sharon Pedersen for a detailed reading of the manuscript,
and for a number of improvements. Thanks also to Dennis DeTurck for
reading the manuscript, and to Wolfgang Ziller for telling me about
Sasaki's work. Finally, thanks to the National Science Foundation for their
support.

1. Geometry of the unit tangent bundle

Let M be an rc-dimensional Riemannian manifold, and (p(t\ v(t)) a path
in its unit tangent bundle UM. It is customary to give UM the Riemannian
metric in which arc length s(t) along this path is given by the formula

s'{t)2 I p\t) I
2 + I v'{t) I

2

where

p\t) tangent vector to the curve p{t) in M
v'(t) covariant derivative of v(t) along p(t) in M

and the norms of these vectors are measured in the given Riemannian
metric on M.

When M is flat, and hence parallel translation is independent of path,
the above metric on UM is simply the product metric of M x S"-1. So
the constant speed geodesies in UM, for example, are just the paths
(p{t), v(tj) for which p(t) and v(t) are themselves constant speed geodesies
in their respective spaces. In particular, each geodesic in UM certainly
projects to a geodesic in M.
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But when M is curved, the story is quite different. A geodesic in the unit
tangent bundle UM need not project to a geodesic in M. We can already
see this when M is a round two-sphere.

Figure 1 Figure 2

J/
In each of Figures 1 and 2, we depict a path (p(t), v(t)) in the unit

tangent bundle US2 of a round two-sphere S2 of radius 1. Though the paths
are different, their initial points are the same and their terminal points are
the same.

In the first path, the point p(t) travels at constant speed along a geodesic

of length 2r on S2. At the same time the tangent vector v(t) rotates at

constant speed with respect to a parallel coordinate frame, turning through
a total angle n from beginning to end. The length of this path (p(t), v(t)) is

7V + 4r2

If the base space were R2 instead of S2, this path in the unit tangent
bundle would be a geodesic, indeed a shortest connection between its

endpoints.
In the second path, the point p(t) travels at constant speed along a

semicircle of length tc sin r. At the same time the tangent vector v(t) rotates
at constant speed with respect to a parallel coordinate frame, turning through
a total angle somewhat less than n because of the curvature in the base

space S2. The savings is half of the area 2n(l — cos r) inside the small circle.
Hence the total angle that v(t) turns through is tc cos r. It follows that the

length of. this second path (p(t), v(t)) is n.

So the second path is shorter than the first. Indeed, it is a minimizing
geodesic in US2 between its endpoints, whose distance apart is therefore n.

Yet its projection on the base space S2 is a small circle, not a geodesic.



GEODESICS IN THE UNIT TANGENT BUNDLE 237

Immediately one asks: which curves on S" are projections of geodesies

in US"?

In answering this, we use another approach to the geometry of US",

viewing it as the homogeneous space SO(n+ l)/SO(n— 1). Here, the special

orthogonal group SO(n +1) is given the usual bi-invariant Riemannian metric,
and then the inner products in directions orthogonal to the cosets of

SO(n— 1) are transfered to the coset space SO(n + l)/SO(n— 1). This makes the

projection map from 50(/?-{-l) to US" a Riemannian submersion. We leave it
as an exercise to show that this Riemannian metric on US" coincides with
the one described earlier.

A geodesic in SO(n+1) which starts out orthogonal to one of theAosets

of SO(n— 1) remains orthogonal to all the cosets, and projects to a geodesic
in SO(n + 1)/S0(n— 1) US". Furthermore, all the geodesies in US" are
obtained this way.

Suppose, for example, that n 3. If (p(t), v(tj) is a geodesic in US3,

then by the above, there must be a geodesic h(t) through the identity in
50(4) such that

h(t) (p(0))Pit)and h(t) (v{0))

But every such geodesic h(t) in 50(4) consists of independent, constant speed
rotations in a pair of orthogonal two-planes in four-space. Hence p(t) travels
along a spiral on an invariant torus, that is, along a spherical helix.

Notice that the isometry h(t) which takes p{0) to p(t) and î;(0) to v(t),
also takes the entire helix {p(t)} to itself. Hence it takes the Frenet frame
of the helix at p(0) to the Frenet frame at p(t). It follows that

v(t) aT(t) + bN(t) + cB{t)

has constant coeffients with respect to this Frenet frame.
Beyond S3, nothing new happens for geodesies: it is easy to see that

every geodesic in US" lies inside a totally geodesic submanifold US3. Indeed,
if (p, v) and (q, w) are nearby points on the geodesic, then the vectors
p, v, q and w determine the corresponding S3.

When it comes to proving the Fundamental Constraint, we will capitalize
on this observation by restricting our attention to S3.

We conclude : the only curves on S" which can be projections of
geodesies on US" are spherical helixes (allowing great and small circles and
points as special cases) which lie on great 3-spheres. All such spherical helixes
will appear in this way.
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