Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LE PROBLÈME DE GAUSS SUR LE NOMBRE DE CLASSES

Autor: Oesterlé, J.

Kapitel: §4. Le groupe des classes

DOI: https://doi.org/10.5169/seals-56588

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'étude des formes quadratiques se ramène facilement à celle des formes primitives, c'est-à-dire celles dont les coefficients ont 1 pour plus grand commun diviseur. En effet, si -d < 0 est congru à 0 ou à 1 modulo 4, il existe un plus grand entier F tel que -d s'écrive $-d_0F^2$ avec $-d_0$ congru à 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques de discriminant -d, il existe un diviseur $f \ge 1$ de F et une classe C' de formes quadratiques primitives de discriminant $-df^{-2}$ tels que C = fC'.

Les nombres de classes \tilde{h} et les nombres de classes primitives h sont donc reliés par l'égalité

(8)
$$\tilde{h}(-d) = \sum_{f|F} h(-df^{-2}).$$

Lorsque F est égal à 1, ce qui équivaut à dire que d n'est pas divisible par le carré d'un nombre premier impair et est congru à 3 (mod. 4), à 4 (mod. 16) ou à 8 (mod. 16), on dit que -d est un discriminant fondamental. Toute forme de discriminant -d est alors primitive et on a $\tilde{h}(-d) = h(-d)$.

§ 4. LE GROUPE DES CLASSES 1)

Cherchant à généraliser la formule classique

$$(x^2 + y^2)(x'^2 + y'^2) = (xx' - yy')^2 + (xy' + yx')^2$$

Gauss se demande pour quels couples (q, q') de formes quadratiques, il existe une forme quadratique q'' telle que l'on ait une identité

$$q(x, y)q'(x', y') = q''(x'', y'')$$
,

où x'' et y'' sont des combinaisons linéaires à coefficients entiers de xx', xy', yx' et yy'.

Si l'on a une identité du type précédent, et si -d, -d', -d'' désignent les discriminants de q, q', q'', le carré du déterminant de l'application linéaire $(x, y) \mapsto (x'', y'')$ (resp. $(x', y') \mapsto (x'', y'')$) est égal à $dq'(x', y')^2/d''$ (resp. $d'q(x, y)^2/d''$).

Gauss montre que lorsque q et q' sont des formes primitives de même discriminant -d, il est possible d'obtenir une identité du type ci-dessus, avec q'' forme primitive de discriminant -d, et

$$q'(x', y') = \det((x, y) \mapsto (x'', y'')), \quad q(x, y) = \det((x', y') \mapsto (x'', y'')).$$

¹⁾ C.-F. Gauss, Disquisitiones Arithmeticae, nº 234 à 243.

Il montre de plus que, sous ces conditions, la classe C'' de q'' ne dépend que des classes C, C' de q, q', et que la loi de composition qui à (C, C') associe C'' définit sur l'ensemble Cl(-d) des classes de formes primitives de discriminant -d une structure de groupe abélien.

De nos jours, on préfère introduire la loi de composition précédente en interprétant Cl(-d) comme un ensemble de classes d'idéaux fractionnaires inversibles. Pour cela, introduisons l'ensemble $\mathcal{O}(-d)$ des nombres complexes de la forme $(u+iv\sqrt{d})/2$, où u et v sont des nombres entiers et $u \equiv vd \pmod{2}$. C'est un sous-anneau de \mathbb{C} , dont le corps des fractions est $K = Q + Qi\sqrt{d}$.

Un réseau de K est un sous-groupe de K qui admet une base sur \mathbb{Z} formée de deux éléments. On dit qu'un réseau L de K est un $\mathcal{O}(-d)$ -idéal fractionnaire inversible si $\mathcal{O}(-d)$ est l'ensemble des $\alpha \in K$ tels que $\alpha L \subset L$. Cela équivaut à dire que L est stable par multiplication par les éléments de $\mathcal{O}(-d)$, et est un $\mathcal{O}(-d)$ -module projectif (nécessairement de rang 1). On vérifie que cela équivaut aussi à l'existence d'un nombre rationnel $\lambda > 0$ tel que $LL = \lambda \mathcal{O}(-d)$, avec L le réseau conjugué de L. Ce nombre λ est alors noté N(L) et appelé norme de L.

Les $\mathcal{O}(-d)$ -idéaux fractionnaires inversibles forment un groupe abélien pour la loi de composition $(L, L') \mapsto LL'$ (si $LL = \lambda \mathcal{O}(-d)$ et $L'L' = \lambda' \mathcal{O}(-d)$, on a $LL'(\overline{LL'}) = \lambda \lambda' \mathcal{O}(-d)$); son élément neutre est $\mathcal{O}(-d)$ et l'opposé de L est $N(L)^{-1}L$. Les $\mathcal{O}(-d)$ -idéaux fractionnaires inversibles de la forme $\lambda \mathcal{O}(-d)$ avec $\lambda \in K^{\times}$ sont dits principaux et forment un sous-groupe du groupe précédent. Le groupe quotient est le groupe des classes de $\mathcal{O}(-d)$ -idéaux fractionnaires inversibles. Il s'identifie canoniquement au groupe $\operatorname{Pic}(\mathcal{O}(-d))$ des classes de $\mathcal{O}(-d)$ -modules projectifs de rang 1.

Etant donné un $\mathcal{O}(-d)$ -idéal fractionnaire inversible L, et une base (ω_1, ω_2) d'orientation positive de L sur \mathbb{Z} , la forme quadratique $q(x, y) = N(L)^{-1} |x\omega_1 + y\omega_2|^2$ est à coefficients entiers, primitive et de discriminant -d: cela résulte facilement de l'égalité $L\overline{L} = N(L)\mathcal{O}(-d)$. Inversement, étant donnée une forme quadratique $ax^2 + bxy + cy^2$ primitive et de discriminant -d, le réseau L de K engendré par a et $(b+i\sqrt{d})/2$ est un $\mathcal{O}(-d)$ -idéal fractionnaire inversible, car on a $L\overline{L} = a\mathcal{O}(-d)$. On vérifie que les constructions précédentes définissent par passage au quotient des isomorphismes réciproques l'un de l'autre entre le groupe des classes de $\mathcal{O}(-d)$ -idéaux fractionnaires inversibles et Cl(-d), muni de la structure de groupe définie par Gauss.

L'élément neutre de Cl(-d) est la classe de la forme $x^2 + (d/4)y^2$ si $d \equiv 0 \pmod{4}$, celle de la forme $x^2 + xy + ((d+1)/4)y^2$ si $d \equiv 3 \pmod{4}$. L'opposé de la classe de $ax^2 + bxy + cy^2$ est celle de $ax^2 - bxy + cy^2$. Le lemme du § 2 permet donc de dresser la liste des éléments d'ordre ≤ 2 de Cl(-d) (appelés classes ambiguës ou ambiges); le nombre de ces éléments est 1)

(9)
$$2^{t-1} \quad \text{si} \quad d \not\equiv 12 \text{ mod. } 16 \quad \text{et} \quad d \not\equiv 0 \text{ mod. } 32$$

$$2^{t-2} \quad \text{si} \quad d \equiv 12 \text{ mod. } 16$$

$$2^{t} \quad \text{si} \quad d \equiv 0 \text{ mod. } 32 ,$$

où t est le nombre de diviseurs premiers de d.

Pour calculer le produit des classes de deux formes quadratiques $ax^2 + bxy + cy^2$ et $a'x^2 + b'xy + c'y^2$ primitives de discriminant -d, on pose ²)

$$\delta = \operatorname{pgcd}(a, a', (b+b')/2),$$

on choisit des entiers u, v et w tels que

$$ua + va' + w(b+b')/2 = \delta,$$

et on pose

$$a'' = aa'/\delta^2$$
, $b'' = [uab' + va'b + w(bb' - d)/2]/\delta$, $c'' = (b''^2 + d)/4a''$.

La forme quadratique $a''x^2 + b''xy + c''y^2$ est alors à coefficients entiers, primitive et de discriminant -d, et sa classe est le produit cherché.

En effet, aux classes des deux formes quadratiques données correspondent les classes des $\mathcal{O}(-d)$ -idéaux fractionnaires: $L = \mathbf{Z}a + \mathbf{Z}(b+i\sqrt{d})/2$ et $L' = \mathbf{Z}a' + \mathbf{Z}(b'+i\sqrt{d})/2$. L'idéal fractionnaire LL' est engendré par les quatre éléments

$$aa'$$
, $(ab' + ai\sqrt{d})/2$, $(a'b + a'i\sqrt{d})/2$, $(bb' - d + i(b + b')\sqrt{d})/4$

et l'on a N(LL')=aa'. On vérifie facilement que $\omega_1=(aa')/\delta$ et $\omega_2=\delta(b''+i\sqrt{d})/2$ forment une base de LL' sur \mathbb{Z} d'orientation positive et que l'on a $(aa')^{-1}|x\omega_1+y\omega_2|^2=a''x^2+b''xy+c''y^2$, d'où le résultat.

Exemple. Le groupe Cl(-347) est cyclique d'ordre 5 (cf. § 3, exemple). Il est engendré par la classe C de la forme réduite $3x^2 + xy + 29y^2$, et

¹) C.-F. Gauss, Disquisitiones Arithmeticae, n° 257 à 259.

²) C.-F. Gauss, *Disquisitiones Arithmeticae*, n° 242; cf. aussi le n° 243 pour des méthodes plus rapides de calcul du produit.

2C, 3C, 4C, 5C sont les classes des formes réduites dont les coefficients sont (9, 7, 11), (9, -7, 11), (3, -1, 29) et (1, 1, 87) respectivement.

§ 5. Lien entre h(-d) et $h(-df^2)$ 1)

Soient -d un discriminant fondamental (cf. § 3), et f un entier ≥ 1 . Les nombres de classes primitives $h(-df^2)$ et h(-d) sont liés par une formule simple. Pour l'établir, nous allons définir un homomorphisme de groupes

$$v: Cl(-df^2) \to Cl(-d)$$
.

C'est dans le langage des idéaux fractionnaires que cet homomorphisme se définit le plus aisément: à la classe d'un $\mathcal{O}(-df^2)$ -idéal fractionnaire L, v fait correspondre la classe de $\mathcal{O}(-d)L$, qui est un $\mathcal{O}(-d)$ -idéal fractionnaire.

Pour tout $x \in \mathcal{O}(-d)$, inversible modulo $f\mathcal{O}(-d)$, le réseau $x\mathcal{O}(-d)$ $\cap \mathcal{O}(-df^2)$ est un $\mathcal{O}(-df^2)$ -idéal fractionnaire. L'application qui à x associe la classe de cet idéal définit par passage au quotient un homomorphisme de groupes

$$u: (\mathcal{O}(-d)/f\mathcal{O}(-d))^{\times} \to Cl(-df^2)$$
.

On démontre (en utilisant le fait que « la donnée d'un réseau équivaut à celle de ses localisés ») que la suite

$$(\mathcal{O}(-d)/f\mathcal{O}(-d))^{\times} \xrightarrow{u} Cl(-df^2) \xrightarrow{v} Cl(-d) \to 0$$

est exacte, et que le noyau de u est engendré par les classes des entiers relatifs inversibles modulo f et des unités de $\mathcal{O}(-d)$.

Un argument de comptage permet d'en déduire la formule

$$h(-df^2) = h(-d)w^{-1}f \prod_{\substack{p \mid f \\ p \text{ premier}}} (1-p^{-1}\chi(p))$$

où l'on a posé

$$w =$$

$$\begin{cases}
3 & \text{si} \quad d = 3 \quad \text{et} \quad f \geqslant 2 \\
2 & \text{si} \quad d = 4 \quad \text{et} \quad f \geqslant 2 \\
1 & \text{sinon},
 \end{cases}$$

et où χ désigne le caractère de Dirichlet quadratique $n \mapsto \left(\frac{-d}{n}\right)$ associé

¹⁾ C.-F. Gauss, Disquisitiones Arithmeticae, nº 253 à 256.