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48 J. OESTERLÉ

L'étude des formes quadratiques se ramène facilement à celle des formes

primitives, c'est-à-dire celles dont les coefficients ont 1 pour plus grand
commun diviseur. En effet, si —d< 0 est congru à 0 ou à 1 modulo 4,

il existe un plus grand entier F tel que —à s'écrive —d0F2 avec —d0

congru à 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques
de discriminant — d, il existe un diviseur / ^ 1 de F et une classe C' de

formes quadratiques primitives de discriminant —df~2 tels que C fC'.
Les nombres de classes h et les nombres de classes primitives h sont

donc reliés par l'égalité

(8) h(-d) YK-df-2).
f\F

Lorsque F est égal à 1, ce qui équivaut à dire que d n'est pas
divisible par le carré d'un nombre premier impair et est congru à 3 (mod. 4),

à 4 (mod. 16) ou à 8 (mod. 16), on dit que — d est un discriminant

fondamental Toute forme de discriminant — d est alors primitive et on a

h(-d) h(-d).

§ 4. Le groupe des classes x)

Cherchant à généraliser la formule classique

(x2 + y2) (x'2 + y'2)xx+Gaus,f se demande pour quels couples (q, q') de formes quadratiques, il
existe Une forme quadratique q" telle que l'on ait une identité

q{x,y)q'(x',y') q"{x", y"),

où x" et y" sont des combinaisons linéaires à coefficients entiers de xx',

x/, yx' et yy'.
Si l'on a une identité du type précédent, et si — d, —d', —d" désignent

les discriminants de q, q\ q", le carré du déterminant de l'application
linéaire (x, y) h- (x", y") (resp. (x', y') i— (x", y")) est égal à dqf(x\ y')2/d" (resp.

d'q{x, y)2/d").

Gauss montre que lorsque q et qf sont des formes primitives de même

discriminant — d, il est possible d'obtenir une identité du type ci-dessus,

avec q" forme primitive de discriminant — d, et

q'(x', y') det ((x, y) (x", y")), q(x, y) det ((x', y') (x", y")).

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 234 à 243.
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Il montre de plus que, sous ces conditions, la classe C" de q" ne dépend

que des classes C, C de q, q', et que la loi de composition qui à (C, C

associe C" définit sur l'ensemble Cl( — d) des classes de formes primitives de

discriminant —à une structure de groupe abélien.

De nos jours, on préfère introduire la loi de composition précédente en

interprétant Cl( — d) comme un ensemble de classes d'idéaux fractionnaires

inversibles. Pour cela, introduisons l'ensemble (9{ — d) des nombres complexes

de la forme (u + iVy/d)/2, où u et v sont des nombres entiers et

u vd (mod. 2). C'est un sous-anneau de C, dont le corps des fractions est

K Q + Qu/d.
Un réseau de K est un sous-groupe de K qui admet une base sur Z

formée de deux éléments. On dit qu'un réseau L de K est un (9{-d)-idéal
fractionnaire inversible si 0( — d) est l'ensemble des aeK tels que aL c= L.

Cela équivaut à dire que L est stable par multiplication par les éléments

de (9( — d), et est un C( —ù)-module projectif (nécessairement de rang 1).

On vérifie que cela équivaut aussi à l'existence d'un nombre rationnel

X > 0 tel que LL X(9( — d\ avec L le réseau conjugué de L. Ce nombre X

est alors noté N(L) et appelé norme de L.

Les (9( — ù)-idéaux fractionnaires inversibles forment un groupe abélien

pour la loi de composition (L, L7) i— LL (si LL X(9( — d) et LL' X'(9{ — d\
on a LL'(LL') XX'(9( — d)); son élément neutre est (9( — d) et l'opposé de L
est N(L)~1L. Les (9(-d)-idéaux fractionnaires inversibles de la forme
XC( — d) avec X e Kx sont dits principaux et forment un sous-groupe du

groupe précédent. Le groupe quotient est le groupe des classes de (9(-d)-
idéaux fractionnaires inversibles. Il s'identifie canoniquement au groupe
Pic (®( — d)) des classes de (9{ — démodules projectifs de rang 1.

Etant donné un O(-d)-idéal fractionnaire inversible L, et une base

(©!, co2) d'orientation positive de L sur Z, la forme quadratique q(x, y)
N(L)-1 | x(Dl + yco2 |2 est à coefficients entiers, primitive et de

discriminant — à : cela résulte facilement de l'égalité LL N{L)0( — d). Inversement,
étant donnée une forme quadratique ax2 + bxy + cy2 primitive et de

discriminant — d, le réseau L de K engendré par a et (b + i^/d)/2 est un
(9{ — d)-idéal fractionnaire inversible, car on a LL a(9{ — d). On vérifie que
les constructions précédentes définissent par passage au quotient des iso-
morphismes réciproques Fun de Fautre entre le groupe des classes de (9(-d)-
idéaux fractionnaires inversibles et Cl(-d), muni de la structure de groupe
définie par Gauss.
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L'élément neutre de Cl( — d) est la classe de la forme x2 -F (d/4)y2 si

à — 0 (mod. 4), celle de la forme x2 + xy + ((d +1)/4)y2 si d 3 (mod. 4).

L'opposé de la classe de ax2 -F bxy + cy2 est celle de ax2 — bxy 4- cy2.

Le lemme du § 2 permet donc de dresser la liste des éléments d'ordre < 2

de Cl( — d) (appelés classes ambiguës ou ambiges); le nombre de ces éléments

est x)

2t~1 si d ^ 12 mod. 16 et d ^ 0 mod. 32

(9) ?'2 si d= 12 mod. 16

2} si d 0 mod. 32

où £ est le nombre de diviseurs premiers de d.

Pour calculer le produit des classes de deux formes quadratiques
ax2 + bxy + cy2 et a'x2 + b'xy + c'y2 primitives de discriminant —d, on

pose 2)

6 pgcd (a, a', (b -F b')/2),

on choisit des entiers u, v et w tels que

ua + va' + w(b + b')/2 6

et on pose

a" aa'/b2 b" [uab'+ va'b + w(bb'— d)/2]/ô c" (b" 2 + <i)/4«,/.

La forme quadratique a"x2 + b"xy + c"y2 est alors à coefficients entiers,

primitive et de discriminant — d, et sa classe est le produit cherché.

En effet, aux classes des deux formes quadratiques données correspondent

les classes des (9( — d)~idéaux fractionnaires: L Za + Z(b + i^fd)/2 et

L' Za' + Z(b' + iy/d)/2. L'idéal fractionnaire LL' est engendré par les

quatre éléments

aa', (ab' + ai^fd)/2 (a'b + di«J~di)/2 (bb' — d + i(b + b')^/d)/4

et l'on a N(LL') — aa'. On vérifie facilement que oq (aa')/h et

co2 t-i é>(b" + i-s/d)/2 forment une base de LL' sur Z d'orientation positive
et que l'on a (aa')~1 | xco1 + y®2 I

2 a"xl + b"xy + c"y2, d'où le résultat.

Exemple. Le groupe Cl( — 347) est cyclique d'ordre 5 (cf. §3, exemple).

Il est engendré par la classe C de la forme réduite 3x2 + xy + 29y2, et

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 257 à 259.

2) C.-F. Gauss, Disquisitiones Arithmeticae, n° 242; cf. aussi le n° 243 pour des
méthodes plus rapides de calcul du produit.
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2C, 3C, 4C, 5C sont les classes des formes réduites dont les coefficients

sont (9, 7, 11), (9, -7, 11), (3, -1, 29) et (1, 1, 87) respectivement

§5. Lien entre h( — d) et h( — df2) x)

Soient — d un discriminant fondamental (cf. §3), et / un entier ^ 1.

Les nombres de classes primitives h( — df2) et h( — d) sont liés par une formule

simple. Pour l'établir, nous allons définir un homomorphisme de groupes

C'est dans le langage des idéaux fractionnaires que cet homomorphisme
se définit le plus aisément: à la classe d'un (9( — d/2)-idéal fractionnaire L,
v fait correspondre la classe de 0( — d)L, qui est un &{ — ù)-idéal fractionnaire.

Pour tout x e (9{ — d), inversible modulo f (9{ — d), le réseau x(9( — d)

n 0( — df2) est un (9{ — ù/2)-idéal fractionnaire. L'application qui à x associe

la classe de cet idéal définit par passage au quotient un homomorphisme
de groupes

On démontre (en utilisant le fait que « la donnée d'un réseau équivaut
à celle de ses localisés ») que la suite

est exacte, et que le noyau de u est engendré par les classes des entiers
relatifs inversibles modulo / et des unités de (9{ — d\

Un argument de comptage permet d'en déduire la formule

v: Cl(-df2) Cl(-d).

u:(&( ,/))•

((9(-d)/f&(-d)y A Cl(-df2) ± 0

h(~df2) h( —d)wVJ] (1-p Xx(p))
P\f

p premier

où l'on a posé

w

3 si d 3 et / ^ 2

2 si d 4 et / ^ 2

1 sinon,

et où x désigne le caractère de Dirichlet quadratique associé

l) C.-F. Gauss, Disquisitiones Arithmeticae, n° 253 à 256.
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