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118 PH. DELANOE AND A. HIRSCHOWITZ

T35+ T, when n = 2,
T4s3+ Tz333:+ T3 when n =3,
Ts+Ty44+ Ty when n = 4,
T,.1+ T, when n > 5.

Proof. The casesn = 2, 3, 4, 5, must be checked bare-handed. There is no
difficulty. Then, for n > 5, one can proceed by induction on n. Indeed assume,

Qaga = Tnwyy + T,mod. E, ;, forsomen = |a|>5.

Recall formula (3) and lemma 7.3; differentiating once the above equality
yields

Paaapr = (.Tn+l+ Tn)b T Quca Parey = Tn+2 + T,,+1 mod. En 5
since | aca | = n + 2. The same is true with b instead of b. Q.E.D.

Remark 7.7. The preceding lemma offers a perspective which brings some
light on the type of difficulties to be expected for carrying out a priori
estimates of each order. In particular, one may anticipate that a special
step should be required for n = 4 (in order to kill the effect of the term
T, 4) ana that the same (simpler) procedure should then apply, arguing by
iteration, for any n > 5.

Notice also that the hardest case appears to be n = 3. Indeed, following
Calabi [8] one must guess the very special coercive functional [1] [24]
S3,3 = Oupc Parper »

perform a careful calculation of A'(S; ;) and use either the Maximum
Principle [24] or a recurrence on LF(dX, ) norms of S5 3 [1]. The approxi-
mate tensor calculus which we may conveniently use hereafter would not be

effective for the case n = 3.

8. A PRIORI ESTIMATES OF ORDER FOUR

¢

In order to prove 7.1 with n = 4, we consider the functional:
S4,4 = Papea Pavea T Pabea Pabed -

It is enough to estimate S, , since it is coercive. Let us compute
—A'(S,, 4). One readily obtains:

~A(S4,4) = Tes + Ts,s (mod. Ej),
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where T's s is coercive, while the sixth order derivatives in T4 4 occur
through @5, With [a| = 2.

In view of 7.4 and 7.6, after bringing the indices cc’ in first position,
we get

(4) —A(S44) = Ts s+ Tsa+ Tyuat Tas+ Ty (mod Ej)

where T'5 5 is the coercive term from above.
As expected in remark 7.7, in order to control the term T, , ,, we need to
consider instead of S, 4, another functional, namely :

6 = S4'-, 4 €Xp (8 Pabe (pZzbE) s

where € i1s a constant to be chosen later on. Then we compute the
quantity

Q = - (A,e) cXp (_—S(Pal_yc (pfzbE) 5

and we easily find
Q= — A4 0 +eTss44+8Ty444+¢€Ts 4, (mod Ej),
where T 4 4 4 is a square and where
Taa,4.4 = Sa,4(Pupea Parear + Pupear ¢&b5d)-
So there exists a constant ¢, such that (see remark 5.1),

(54,4)2 <1 Ty a4,4.

Furthermore we may choose constants ¢; such that,

L 1
| Ts,a,4l < ¢,y Sy, 4(T5,5)2 s 1 Ts 4| < c3(T's, s Sy, ),
A 1
| Tyaal< C4(S4,4)2 o [ Tyl < €s84,4, |Tyf < C6(S4,4)2 .

By splitting T 5 in its two halves and by putting each half together with
Ts 4 4 and Ty , respectively, one obtains:

ot 1

1 3 1 3
Q= (E 5 g C%) (S4,4)% — a(S4,4)* — <C§ + 5 C%) Sa,a — ¢6(S4,4)” .

Now & must be chosen small enough in order for the coefficient of (S4 4)?
lo be strictly positive: ¢ e (0, (2/c, c?)). |

To complete the proof, one argues that Q(zo) < 0 at a point z,e X
where 0 assumes its maximum on X, which implies
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S4,4(Zo) < ¢y,

for some controlled constant ¢,, and anywhere else on X, since 0 < 6(z,)
and | DVVo || < C;, one infers that:

S4,.4 < cqexp (2eCy).

9. A PRIORI ESTIMATES OF ORDER FIVE AND MORE

Here, in order to prove 7.1 with n > 5, we consider the functional:

1

Sn,n - 5 2 Pabe Pava

le]=n—2

.1 .
(the coefficient 5 appears for both definitions of S, 4 to agree).

Again S, , 1S coercive and we compute in a similar way,
*A’(Sn,n) = Tn+2,n + Tn+1,n+1 (mOd En—l)a

where T, .+ 15 coercive. As for T,,, ,, proceeding as in the previous
section, we find:

Tn+2,n = Tn+1,n + Tn,n = Tn (mOd En—l)'
Hence,
~~A,(Sn,n) = Tn+1,n+1 + Tn+1,n + Tn,n + Tn (I’IlOd En—l)a

with T, .+, coercive. Changing n into (n—1), for n > 6, yields still
modulo E, _ 4

_A/(Sn—l,n—l) = Til,n + T;! (mOd En—l)'
In view of formula (4) of the preceding section, this holds for n = 5 as
well. From the coercivity of T, , we may choose constants ¢; > 0, such that
1

—Al(Sn—l,n—l) = Cq Sn,n —— CZ(Sn,n)—z_ — C3-

Moreover we may choose constants c¢; such that

1 1
| Tn+1,nl < 264(Tn+1,n+1 Sn,n)2 s I Tn,nl < Cs Sn,n > | Tnl < CG(Sn,n)2 5

and c;c; > ci + cs.
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