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118 PH. DELANOË AND A. HIRSCHOWITZ

when n 2

when n 3

when n — 4

when n ^ 5

Proof. The cases n 2, 3, 4, 5, must be checked bare-handed. There is no
difficulty. Then, for n > 5, one can proceed by induction on n. Indeed assume,

(Paa'a + 1 + Tn m0(l. En~ 1 > f°r SOm « | OC | ^ 5

Recall formula (3) and lemma 7.3; differentiating once the above equality
yields '

tyaa'aib (Tn+1 + Tn)b + (paca (pa'c'b ^n + 2 + Tn +1 mod.

since | aca | n + 2. The same is true with h instead of b. Q.E.D.

Remark 1.7. The preceding lemma offers a perspective which brings some

light on the type of difficulties to be expected for carrying out a priori
estimates of each order. In particular, one may anticipate that a special

step should be required for n 4 (in order to kill the effect of the term

T4 4) and that the same (simpler) procedure should then apply, arguing by

iteration, for any n ^ 5.

Notice also that the hardest case appears to be n 3. Indeed, following
Calabi [8] one must guess the very special coercive functional [1] [24]

perform a careful calculation of A'(S3j3) and use either the Maximum

Principle [24] or a recurrence on Lp(dXg,) norms of S3>3 [1]. The approximate

tensor calculus which we may conveniently use hereafter would not be

effective for the case n 3.

It is enough to estimate S4 4 since it is coercive. Let us compute
— À'(S4>4). One readily obtains:

^3,3 — tyab'c tya'bc' >

8. A PRIORI ESTIMATES OF ORDER FOUR

In order to prove 7.1 with n 4, we consider the functional:

^4,4 tyabcd tyäbcd T tyabcd tyâbcd •

— A,(S4>4) — T6 4 + T5 5 (mod. E3),



CALABI'S CONJECTURES 119

where T5 5 is coercive, while the sixth order derivatives in T6 4 occur
through cpaiacc, with | oc [ 2.

In view of 7.4 and 7.6, after bringing the indices cd in first position,
we get

(4) — À\S4 4r) — T5<5 + 7*5,4 + 7"4 4>4 + T4>4 + T4 (mod. E3)

where T5 >5 is the coercive term from above.
As expected in remark 7.7, in order to control the term T4 4 4, we need to

consider instead of S4 4 another functional, namely :

0 S4> 4 exp (s (p5te),

where s is a constant to be chosen later on. Then we compute the
quantity

Q - (A'0)exp(-e<pÄ(pä(>i;);

and we easily find

Q - A'($4>4) + bT4)4 4 4 + s2T4j4>4j4 + sT5 4 4 (mod. E3),

where r4 4 4 4 is a square and where

T4,4,4,4 ^4,4(9«^ + (poöcrf' •

So there exists a constant cA such that (see remark 5.1),

(S4,4.)2 ^ Cx T4 4 4)4.

Furthermore we may choose constants ct such that,
1 1

I T5,4,4 I < C2S4>4(T5,5)2 I T5j4 I ^ C3(T5>5S44)2,
1 1

I t4i4j4 I < C4(S4>4)2, I t4>4 I < c5s4,4, I r4 i ^ C6(S4,4)2.

By splitting T5,5 in its two halves and by putting each half together with
A,4,4 and T,4 respectively, one obtains:

0 ^ Ï 82 Cl)(S4'J2 ~ - (C* + J Ci) S4,4 ~ C6(S4,j

Now £ must be chosen small enough in order for the coefficient of (S4 4)2
to be strictly positive: s e (0, (2/ci c|)).

To complete the proof, one argues that Q(z0) < 0 at a point z0eX
where 0 assumes its maximum on X, which implies
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£4,4-(Zo) ^ C1 s

for some controlled constant c7, and anywhere else on X, since 0 ^ 0(zo)

and II DVVcp || ^ C3, one infers that:

£4,4 < c7 exp (2sC3)

9. A PRIORI ESTIMATES OF ORDER FIVE AND MORE

Here, in order to prove 7.1 with n ^ 5, we consider the functional:

^n, n ^ ^ tyaba. tyäbä
1

|a| fi — 2

(the coefficient - appears for both definitions of S4> 4 to agree).

Again SHt n
is coercive and we compute in a similar way,

Tn + 2fn + Tn + Un + 1 (mod. En_1),

where Tn + 1^n + 1 is coercive. As for Tn + 2)„, proceeding as in the previous
section, we find :

Tn + 2,n Tn + lt„ + Tn n + Tn (mod. En_1).

Hence,

— Tn+1>n + 1 + T„ + 1„ + Tn n + Tn (mod. E„_x),

with Tn + ln + 1 coercive. Changing n into (n— 1), for n ^ 6, yields sti//
modulo 1

— A'(S„-i,»-i) ^ n (mod.£„M).

In view of formula (4) of the preceding section, this holds for n 5 as

well. From the coercivity of T'n n we may choose constants ct > 0, such that

y
— A'(S„— l,w-l) ^ C1 Sn,n ~~ C2(Sn,n)2 ~ C3'

Moreover we may choose constants ct such that

1 1
I Tn+i,n I < 2c4(Tn + Un+1 Sn>n)2 |Tn,J<c5^n, |TJ ^ c6(S„,„)2,

and c1c7 > c| + c5.
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