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26 P. RIBENBOIM

Conversely, if K is a field, which is a quadratic extension of Q, then it is

necessarily of the form K Q(y/d), where d is a square-free integer.
If à > 0 then K is a subfield of the field R of real numbers: it is

called a real quadratic field.

If à < 0 then K is not a subfield of R, and it is called an imaginary
quadratic field.

If a a + b-J~d e K, with a, b e Q, its conjugate is a7 a — b*J~d.

Clearly, a a' exactly when a e Q.
The norm of a is N(a) aa' a2 — db2 e Q. It is obvious that

N(a) ^ 0 exactly when a^O. If a, ß e K then N(aß) N(a) in
particular, if a e Q then N(a) a2.

The trace of a is Tr(a) a + a' 2a e Q. If a, ß g K then Tr(a+ß)
Tr (a) + Tr (ß); in particular, if a e Q then Tr (a) 2a.

It is clear that a, a' are the roots of the quadratic equation X2 — Tr(a)2f
+ N(a) 0.

B) Rings of integers

Let K Q(y/d), where d is a square-free integer.
a e K is an algebraic integer when there exist integers m, n g Z such

that a2 + ma + n 0.

Let A be the set of all algebraic integers of K. A is a subring of K,
which is the field of fractions of A, and A n Q Z. If ae A then the

conjugate a' e A. Clearly, a e A if and only if both N(a) and Tr(a) are in Z.

Here is a criterion for the element a a + b*J~d (a, heQ) to be an

algebraic integer : a e A if and only if

2a ueZ 2b v e Z
u2 — d v2 0 (mod 4).

Using this criterion, it may be shown:

If d 2 or 3 (mod 4) then A {a + b^fd | u, b e Z}.

If d 1 (mod 4) then A
T b^fd

a,beZ,a b (mod 2)
2

If a1,a2e A are such that every element a e A is uniquely of the form
a + m2oc2, with m1, m2 e Z, then {a!, a2} is called an integral basis

of A. In other words, A Zol1 © Za2.

If d m 2 or 3 (mod 4) then {1, d} is an integral basis of A.
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If à SE 1 (mod 4) then < 1, —> is an integral basis of A.

C) Discriminant

Let {oq, a2} be an integral basis. Then

Tr(oci) Tr(a1a2)

Tr^o^) Tr(ai)
D Dk det

is independent of the choice of the integral basis. It is called the discriminant
of K. It is a non-zero integer.

If à ~ 2 or 3 (mod 4) then

Tr (1) Tr(Vrf)\ /2 0
D det det I so D 4d.

VTr(yrf) Tr(rf) / \0 2

If d m. 1 (mod 4) then

Tr (1) T

Tf1+^D det j det/ \ so D d.
1 +\Z^L

Jr A +VL 2I\ 1
:

Every discriminant is D 0 or 1 (mod 4).

In terms of the discriminant,

A j*_±Wi>
a,b g Z a2 Db2 (mod 4)

D) Decomposition of primes

Let K Q(y/d), where d is a square-free integer, let A be the ring of
integers of K.

The ideal P =£ 0 of A is a prime ideal if the residue ring A/P has no
zero-divisors.

If P is a prime ideal there exists a unique prime number p such that
P n Z Zp, or equivalently, P ^ Ap.
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