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340 P. VOGEL
§ 2. REPRESENTATIONS DES ALGEBRES DE HECKE

Dans toute la suite, on désignera par K l'extension quadratique de
Panneau k définie par

K = k[x]/ﬂ—ak-{—ﬁ'
On posera également p = oo — A. On a donc
o= A+ K, B = )\'“7

et K est 'anneau des polynomes de Laurent a coeflicients entiers en les
variables A et p.

Soit n un entier positif. On désignera par X, lensemble {1,2,..,n}
et Pon notera M le K-module librement engendré par lensemble F, des
fonctions de X, dans Z. Soit i un entier compris strictement entre 0 et n.
On notera s; 'application linéaire de M dans lui-méme définie par:

Af og; st f(i) < f(i+1)
VieF,, s(f) = rf st f@i) = fi+1)
A+wf —pfeg st f@) > f(i+1)

ou g; désigne la permutation de X, qui échange i et i + 1.

LEMME 2-1. Les endomorphismes s; vérifient les formules suivantes:

s? —as; + B =0,

Vi,j<n, ]>l+ 1 = SiSj:SjSi

j =i+1 = SiSjSi = SjS,:Sj.

Démonstration. La deuxieme formule est évidente car les supports des
permutations ¢; et ¢; sont disjoints. La premiere formule a vérifier sur une
fonction f est évidente si f prend les mémes valeurs en i et en i + 1.
Il y a donc essentiellement les cas f(i) > f(i+1) et f(i) < f(i+1) et chacun
de ces cas se montre aisément. Quant a la derniére formule, il faut considérer,
pour une fonction f de F,, les différentes positions respectives de f(i),
f(@i+1), f(i+2). Lorsque deux de ces nombres sont égaux, la formule est
facile a vérifier. Sinon il reste a priori six cas a examiner. A ce stade il
est plus facile de poser:

Va,beZ, a<b = [ab] =0 <a,b> = A
a>b = [abl=A+p <ab>

I
l
=
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On a alors, si f(i) est différent de f(i+ 1),

si(f) = [f@), fG+DIf + <fG), fG+1) > feoe.
Désignons par a, b et ¢ les trois nombres f(i), f(i+1) et f(i+2) que
on suppose distincts. On vérifie les formules suivantes:
5;5;5:(f) = ([a, b1%[b, a] + [a, ] <a,b> <b,a>)f
+ ([a, b] [b, ] <a,b> + [a,c][b,a] <a, b>)f o g
+ [a, b] [a,c] <b,c>fc¢g; + [a,b] <a,c> <b,c>f o g;¢g;

+ [b,c] <a,b> <a,c>f o g¢;

+ <a, b> <a,C> <b,C>f08i8j8i,

5;5:5;(f) = ([a b1 [b, c]* + [a,¢] <b,c> <c¢, b>)f
+ ([a, b] [b, c] <b,c> + [a,c][c, b] <b,c>)f og;
+ [a,c] [b,c] <a,b>fo¢g + [a,b] <a,c> <b,c> f o g¢g
+ [b,c] <a,b> <a,c>f ogs;
+ <a,b> <a,c> <b,c>f oggE;.

Il nest alors pas difficile de vérifier que les deux expressions sont égales
quelles que soient les positions respectives des trois nombres a, b et c.

COROLLAIRE 2-2. Il existe une représentation de [lalgéebre H, dans
Palgebre des endomorphismes de M, qui envoie les générateurs o; de
H, en lendomorphisme s;. De ce fait M devient un H, -module.

Soit @ une application a support fini de Z dans N. On appellera
poids de ¢ le nombre ) o(p). Soit M(p) le sous-module de M (n étant

eZ .
¢gal au poids de @) engeﬁdré par les fonctions f de F, telles que
VpeZ, o(p) = card(f '(p).

PROPOSITION 2-3.  Pour toute fonction ¢ de Z. dans N, a support fini,
le sous-module M(¢p) de M est un H, -module.

Démonstration. Evidente.

Soient p < n des entiers strictement positifs. On notera X, I'ensemble des
€léments de H, de la forme: 6,_,0,_, .. 0;,avec 1 < i < p. Siiest égal a 1,
cet element est égal 4 1. On notera S, l'ensemble des éléments de H,
de la forme: 1,71, ... T,, chaque élément t; appartenant a ¥,. L’ensemble S,

~ posséde p! éléments. L'importance de cet ensemble provient du résultat
. classique suivant:
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PROPOSITION 2-4. L’algébre H, est un k-module libre de base S,.

Démonstration. Soit p < n un entier strictement positif. Notons, pour
tout i compris entre 1 et p (au sens large), 1; I'élément c,_,6,_, .. C;.
I1 est facile de vérifier les formules suivantes:

o;T; st j<i—1
Vi<pVj<p10;= T; si j=i—1
Ci—1T; st j>i.

Il en résulte que le sous-module de H, engendré par S, est stable par
multiplication a droite par tous les générateurs o; de H,, ce qui prouve
que H, est engendré linéairement par S,,.

Soit maintenant ¢ lapplication de Z dans N, de support {1,2,.., n}
et qui vaut 1 sur son support. Le K-module M(p) est alors isomorphe a
'anneau du groupe symétrique K[S,]. Soit f, 'inclusion de {1, .., n} dans Z.
La multiplication a droite par f, induit une application K-linéaire y de
H, ® K dans M(p). Si 'on tensorise ces modules par Z au-dessus de K,
via le morphisme de K dans Z qui envoie A et pen l et — 1, H, ® Z
devient Z[S,] ainsi que M(p) et y devient l'identité. On en déduit que
v(S,) est une base de M(p) ® Z et un systeme libre de M(yp). Ce qui
prouve que S, est une base de H,,.

COROLLAIRE 2-5. Pour tout entier n > 0,H, est un H,_,-module a
gauche libre de base X, = {1,0,_1, ., Gy_1C,—5 .. C1}.

COROLLAIRE 2-6.  Pour tout n > 0, H,,, estun H,bimodule isomorphe a

H,®H, ® H,.
Hp,-

Démonstration. L’isomorphisme provient de la stabilisation i de H,
dans H,,, et de l'application de H, x H, dans H,,; qui a (u, v) associe
i(wo,i(v). L’application qui s’en déduit respecte les bases (pour la structure
le H,-module a gauche). C’est donc un isomorphisme.

§ 3. TRACES DES ALGEBRES DE HECKE

Soit » > 0 un entier. Via la stabilisation i de H, dans H,,,, H,,
est un H,-bimodule. On peut donc considérer le module E, = Hy(H,, H, . ),
quotient de H,,, par le sous-module engendré par les éléments de la forme:

|
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