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340 P. VOGEL

§ 2. Représentations des algèbres de Hecke

Dans toute la suite, on désignera par K l'extension quadratique de

l'anneau k définie par

K /cMA2_aX+ß.

On posera également p a — X. On a donc

a X + p, ß Xp,

et K est l'anneau des polynômes de Laurent à coefficients entiers en les

variables X et p.

Soit n un entier positif. On désignera par Xn l'ensemble {1, 2,n}
et l'on notera M le K-module librement engendré par l'ensemble Fn des

fonctions de Xn dans Z. Soit i un entier compris strictement entre 0 et n.

On notera st l'application linéaire de M dans lui-même définie par :

/ Xf° Sisi /(/) < /(i+1)
VfeF„,si(f) I Xfsi /(/) /(i+1

(k + H)/ - M-/ 0 Si si /(/) > /(i+1)
où 81 désigne la permutation de Xn qui échange i et i + 1.

Lemme 2-1. Les endomorphismes si vérifient les formules suivantes :

sf — OLSi + ß 0

Vz,j < n, j > i + 1 => s^j SjSi

j i + 1 => sisjsi SjSiSj.

Démonstration. La deuxième formule est évidente car les supports des

permutations et Sj sont disjoints. La première formule à vérifier sur une
fonction / est évidente si / prend les mêmes valeurs en i et en i + 1.

Il y a donc essentiellement les cas /(i) > /(i + 1) et f(i) < /(i+1) et chacun
de ces cas se montre aisément. Quant à la dernière formule, il faut considérer,

pour une fonction / de F„, les différentes positions respectives de /(i),
/(i +1), /(i + 2). Lorsque deux de ces nombres sont égaux, la formule est

facile à vérifier. Sinon il reste à priori six cas à examiner. A ce stade il
est plus facile de poser :

Va, i? e Z a < b => [a, h] 0 <a,b> X

a > b => [a, b] % + \i <a, b> — p
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On a alors, si f(i) est différent de f(i +1),

Si(f)C/(0, /(i+l)]/+ </(0> /('- 1) > 6» •

Désignons par a, b et c les trois nombres /(i), /(i + 1) et /(i + 2) que

l'on suppose distincts. On vérifie les formules suivantes :

SiSjSi(f) (la, b~]2[b, a] + [a, c] <a,b> <b,a>)f
+ ([a, h] [h, c] <a, b> + la, c] lb, a] <a, b>)f °

+ [a, £] [a, c] <b, c> f o s- + [a, 6] <a, c> <b, c>f °

+ [6, c] <a, h> <a, c> f o 8^8j

+ <a,b> <a,c> <b, c> f °

SjSiSj(f) (la, b~\ lb, c]2 + [a, c] <b, c> <c, b>)f
+ ([a, fr] [fr, c] <b,c> + [a, c] [c, fr] <b, c>)f ° s7-

+ [a, c] [h, c] <a,b> f o sf + [a, h] <a,c> <b, c> f ° sjei

+ [^, c] <a,b> <a, c> f ° s7-

+ <a,b> <a,c> <b,c> f ° s7-S;s7-.

Il n'est alors pas difficile de vérifier que les deux expressions sont égales

quelles que soient les positions respectives des trois nombres a, b et c.

Corollaire 2-2. Il existe une représentation de l'algèbre Hn dans

l'algèbre des endomorphismes de M, qui envoie les générateurs <jt de

Hn en l'endomorphisme st. De ce fait M devient un H„-module.

Soit cp une application à support fini de Z dans N. On appellera
poids de cp le nombre cp(p). Soit M(cp) le sous-module de M (n étant

peZ
égal au poids de cp) engendré par les fonctions / de Fn telles que

VpeZ, cp(p) => card

Proposition 2-3. Pour toute fonction cp de Z dans N, à support fini,
le sous-module M(cp) de M est un Hn-module.

Démonstration. Evidente.

Soient p < n des entiers strictement positifs. On notera l'ensemble des

éléments de Hn de la forme: ap_1ap_2 ai5 avec 1 ^ i ^ p. Si i est égal à 1,

cet élément est égal à 1. On notera Sn l'ensemble des éléments de Hn
de la forme: x„, chaque élément xf appartenant à L'ensemble S„
possède p! éléments. L'importance de cet ensemble provient du résultat
classique suivant :
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CJjXj si j < - 1

X si j - 1

aT; - ßti-1 si j
Vj-lli si j >

Proposition 2-4. L'algèbre Hn est un k-module libre de base Sn.

Démonstration. Soit p < n un entier strictement positif. Notons, pour
tout i compris entre 1 et p (au sens large), xt l'élément ap_1ap_2
Il est facile de vérifier les formules suivantes :

Vi < p, V; <

Il en résulte que le sous-module de Hn engendré par Sn est stable par
multiplication à droite par tous les générateurs ot de Hn, ce qui prouve
que Hn est engendré linéairement par Sn.

Soit maintenant cp l'application de Z dans N, de support {1, 2,..., n}
et qui vaut 1 sur son support. Le K-module M(cp) est alors isomorphe à

l'anneau du groupe symétrique K[0„]. Soit f0 l'inclusion de {1,..., n) dans Z.

La multiplication à droite par f0 induit une application K-linéaire y de

Hn (g) K dans M(cp). Si l'on tensorise ces modules par Z au-dessus de K,
via le morphisme de K dans Z qui envoie À et p en 1 et — 1, Hn ® Z
devient Z[0„] ainsi que M(cp) et y devient l'identité. On en déduit que
y(S„) est une base de M(cp) 0 Z et un système libre de M(cp). Ce qui

prouve que Sn est une base de Hn.

Corollaire 2-5. Powr tout entier n > 0, Hn est un Hn-^module à

gauche libre de base {1, a„_l5..., a„_1a„_2 G!}.

Corollaire 2-6. Pour tout n>0,Hn + 1 est un Hn-bimodule isomorphe à

Hn®Hn 0 Hn.
Hn- i

Démonstration. L'isomorphisme provient de la stabilisation z de Hn
dans + 1 et de l'application de Hn x Hn dans H„ + 1 qui à (m, u) associe

i(u)ani(v). L'application qui s'en déduit respecte les bases (pour la structure
le Hn-module à gauche). C'est donc un isomorphisme.

§ 3. Traces des algèbres de Hecke

Soit n > 0 un entier. Via la stabilisation i de Hn dans Hn + 1, Hn+1

est un H„-bimodule. On peut donc considérer le module En H0(Hn, Hn + 1),

quotient de Hn + 1 par le sous-module engendré par les éléments de la forme:
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