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44 J. OESTERLÉ

L'exposé est divisé en deux parties :

Les résultats exposés dans la première partie sont dus pour l'essentiel
à Gauss 1). On y montre pour commencer qu'il n'y a qu'un nombre fini
de classes de formes quadratiques de discriminant A < 0 donné (§ 1). On
donne un algorithme simple permettant d'obtenir un système de représentants
de ces classes, et de calculer le nombre h(A) de telles classes (§ 2 et § 3).

Une des découvertes fondamentales de Gauss est l'existence d'une structure
de groupe abélien naturelle sur l'ensemble Cl (A) des classes de formes

quadratiques primitives de discriminant À {primitives signifie telles que
pgcd(a, b, c) — 1): cette structure de groupe est décrite au § 4 ; le lien avec

l'arithmétique des corps quadratiques imaginaires est exposé aux § 4 et § 5.

En dressant une table des nombres de classes, Gauss constate
expérimentalement que ces nombres semblent tendre vers + oo lorsque le
discriminant tend vers — oo (en satisfaisant à (2)). Il faudra attendre plus de cent ans,

avec les travaux de Heilbronn en 1934, pour voir cette assertion démontrée.
Se pose alors la question de dresser, pour les petites valeurs de h entier

^ 1, la liste complète des À < 0 tels que h{A) h. C'est essentiellement

l'histoire (sans démonstrations) des progrès récents obtenus sur cette question
qui fait l'objet de la seconde partie de l'exposé. Nous expliquerons le rôle

joué par les courbes elliptiques dans ces progrès.

I. La classification de Gauss des formes quadratiques

§ 1. Finitude du nombre de classes 2)

Théorème. Soit d un entier ^ 1. Il n'y a qu'un nombre fini de

classes deformes quadratiques de discriminant —d.

Ce théorème résulte des deux lemmes suivants :

Lemme 1. Toute classe contient une forme quadratique ax2 + bxy + cy2

telle que | b | ^ a ^ c.

1) C.-F. Gauss, Disquisitiones Arithmeticae, 1801 (Werke, t. I), Section cinquième.
(Traduction française par A.-C.-M. Poullet-Delisle, parue en 1807.) Dans cet
ouvrage, Gauss suppose les formes ax2 + bxy + cy2 paires, c'est-à-dire telles que b
soit pair. Le cas général s'y ramène facilement, en remplaçant ax2 + bxy + cy2

par 2ax2 + 2bxy + ley2 lorsque b est impair.
2) C.-F. Gauss, Disquisitiones Arithmeticae, n° 174.



PROBLÈME DE GAUSS 45

Lemme 2. Il riy a qu'un nombre fini de triplets de nombres entiers

(a, b, c) tels que b2 — 4ac — d et \ b \ ^ a ^ c.

Démontrons le lemme 1. Soit ax2 + bxy + cy2 une forme quadratique

appartenant à la classe C considérée. Par hypothèse cette forme est positive,

de sorte que a > 0 et c > 0. Les changements de variables (x, y) m» (x — ey, y)

et (x, y) i—> (x, y — ex), où e est le signe de b, ont pour effet de remplacer

(a, b, c) par (a, b-2ea, a + c —|b|) et par (a + c-\b\, b-2zc, c). Si donc \ b\> a

ou | b | > c, on peut remplacer ax2 + bxy -F cy2 par une forme équivalente

pour laquelle la quantité a + c est strictement plus petite. Après un nombre

fini de substitutions de ce type, on trouve une forme ax2 + bxy + cy2

dans C pour laquelle | b | a et ] b | ^ c. Cette forme, ou la forme

ex2 - bxy + ay2 qui s'en déduit par le changement de variables (x, y)

b-> (y, —x), remplit les conditions du lemme 1.

Démontrons le lemme 2. Si (a, b, c) sont comme dans l'énoncé de ce

lemme, on a

(3) d 4ac — b2 ^ 4a2 — a2 3a2

de sorte que a ne peut prendre qu'un nombre fini de valeurs; il en est

alors de même de b et de c, puisque | b j ^ a et c (b2 + d)/4a.

§ 2. Formes quadratiques réduites x)

Dans ce paragraphe, nous montrons comment la théorie de la réduction
de Gauss permet de sélectionner un représentant dans chaque classe C

de formes quadratiques de discriminant — d.

Nous savons déjà que C contient une forme quadratique ax2 + bxy + cy2

telle que | b | ^ a ^ c (lemme 1 du § 1). Peut-il y avoir plusieurs formes
de ce type dans C? En fait, la seule autre possible est ax2 — bxy + cy2,

lorsqu'elle est dans C. Ceci vient du fait que \ b\ est déterminé par a

et c (on a b2 — 4ac=—d), et que a, c sont caractérisés par le fait que
pour toute forme quadratique q e C, on a

(4) a mî(q(u)) (u^O dans Z2) ;

(5) ac inf (q(u)q(v)) (u, v non colinéaires dans Z2).

Il nous suffit en effet de vérifier (4) et (5) pour une seule forme
quadratique q e C, par exemple la forme ax2 -h bxy + cy2 elle-même. Mais

^ C.-F. Gauss, Disquisitiones Arithmeticae, n° 171 et 172.
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pour celle-ci, on a q( 1, 0) a, q(0, 1) c et q(x, y) ^ ax2 — | b || xy | + cy2

^ (2a —|h|) | xy | + (c —a)y2, d'où

q(x, 0) ^ a si x ^ 0

(6) q(0, y) ^ c si 3; # 0

g(x, y) ^ (2a —|h|) + (c — a) a + c — | h [ > c si xy 0,

et donc les égalités (4) et (5).

Voyons maintenant dans quels cas la forme ax2 — bxy + cy2 appartient
à la classe C :

Lemme. Pour que laforme q(x, y) ax2 + bxy + cy2 (avec \b\^a^c)
soit équivalente à la forme q'(x, y) ax2 — bxy + cy2, il faut et il suffit

que bon ait a \ b |, a c ou b — 0.

On a q(x, y) q'(x ± y, y) si a ± b, q(x, y) q'(y, — x) si a c,

fa ß
q(x9 y) q'(x, y) si b 0. Supposons 0 < | b | < a < c. S'il existe

VT 8

e SL2(Z) tel que q'(x, y) q(ax + ßy, yx + Ôy), on a q(a, y) a et g(ß, 8) c,

/oc ß\
d'où y 0 puis ß 0 en appliquant (6), et finalement s + /, ce

\y <v
qui est absurde.

L'étude qui précède nous conduit à adopter la définition suivante:

une forme quadratique ax2 + bxy + cy2 est dite réduite si l'on a

I b I ^ a < c

b ^ 0 si a est égal à | b | ou à c

Nous avons alors prouvé le théorème suivant :

Théorème. Chaque classe de formes quadratiques de discriminant —d

contient une unique forme réduite.

La démonstration du lemme 1 du § 1 fournit en fait un algorithme

permettant d'obtenir la forme quadratique réduite équivalente à une forme

donnée.

Exemple. Appliqué à la forme quadratique 9x2 + 43xy + 53y2 (représentée

par (9, 43, 53) pour abréger), cet algorithme s'écrit

(9, 43, 53) ~ (9, 25, 19) - (9, 7, 3) - (5, 1, 3) ~ (3, -1, 5)

et 3x2 — xy + 5y2 est la forme réduite cherchée.
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§ 3. Une méthode élémentaire pour calculer le nombre de classes *)

Soit d un entier ^ 1. D'après le § 2, le nombre h( — d) de classes de formes

quadratiques de discriminant — d est le nombre de formes quadratiques
réduites de discriminant — d, c'est-à-dire le nombre de triplets (a, fi, c)

d'entiers vérifiant

b2 — 4ac — d

(7) | b < a < c

b > 0 si a est égal à j b | ou à c

Nous savons déjà que h( — d) est non nul si et seulement si —d est

congru à 0 ou à 1 modulo 4. Les conditions (7) entraînent que a, donc
aussi | fi | est majoré par J~dß (§ 1, formule (3)) et que | fi | est de même
parité que d. On en déduit aussitôt la formule suivante, permettant de calculer
h{ — d) :

Proposition. Supposons —d congru à 0 ou à 1 modulo 4. On a:

h(~d) — Z n{a,b)
Cd/3 a\((b2 + d)/4)

b d(mod. 2) b < a ^ V(è2 + d)/4

avec n(a,b)1 si l'on a b0 ou a b ou a U(&2 + rf)/4, et
n(a, b) 2 sinon.

Exemple. Calculons £(-347). On a 10 < ^347/3 < 11, d'où le tableau
suivant :

b (b2 + d)/4 a n(a, b)

1 87 3.29 1,3 1,2
3 89 — _
5 93 3.31 — _
7 99 32.11 9 2
9 107 — _

dont on déduit £(-347) 5. Les coefficients des cinq formes réduites se
lisent sur le tableau ; ce sont :

(1, 1, 87), (3, 1, 29), (3, -1, 29), (9, 7, 11) et (9, -7, 11).

') C.-F. Gauss, Disquisitiones Arithmeticae, n° 174 et 175.
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L'étude des formes quadratiques se ramène facilement à celle des formes

primitives, c'est-à-dire celles dont les coefficients ont 1 pour plus grand
commun diviseur. En effet, si —d< 0 est congru à 0 ou à 1 modulo 4,

il existe un plus grand entier F tel que —à s'écrive —d0F2 avec —d0

congru à 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques
de discriminant — d, il existe un diviseur / ^ 1 de F et une classe C' de

formes quadratiques primitives de discriminant —df~2 tels que C fC'.
Les nombres de classes h et les nombres de classes primitives h sont

donc reliés par l'égalité

(8) h(-d) YK-df-2).
f\F

Lorsque F est égal à 1, ce qui équivaut à dire que d n'est pas
divisible par le carré d'un nombre premier impair et est congru à 3 (mod. 4),

à 4 (mod. 16) ou à 8 (mod. 16), on dit que — d est un discriminant

fondamental Toute forme de discriminant — d est alors primitive et on a

h(-d) h(-d).

§ 4. Le groupe des classes x)

Cherchant à généraliser la formule classique

(x2 + y2) (x'2 + y'2)xx+Gaus,f se demande pour quels couples (q, q') de formes quadratiques, il
existe Une forme quadratique q" telle que l'on ait une identité

q{x,y)q'(x',y') q"{x", y"),

où x" et y" sont des combinaisons linéaires à coefficients entiers de xx',

x/, yx' et yy'.
Si l'on a une identité du type précédent, et si — d, —d', —d" désignent

les discriminants de q, q\ q", le carré du déterminant de l'application
linéaire (x, y) h- (x", y") (resp. (x', y') i— (x", y")) est égal à dqf(x\ y')2/d" (resp.

d'q{x, y)2/d").

Gauss montre que lorsque q et qf sont des formes primitives de même

discriminant — d, il est possible d'obtenir une identité du type ci-dessus,

avec q" forme primitive de discriminant — d, et

q'(x', y') det ((x, y) (x", y")), q(x, y) det ((x', y') (x", y")).

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 234 à 243.
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Il montre de plus que, sous ces conditions, la classe C" de q" ne dépend

que des classes C, C de q, q', et que la loi de composition qui à (C, C

associe C" définit sur l'ensemble Cl( — d) des classes de formes primitives de

discriminant —à une structure de groupe abélien.

De nos jours, on préfère introduire la loi de composition précédente en

interprétant Cl( — d) comme un ensemble de classes d'idéaux fractionnaires

inversibles. Pour cela, introduisons l'ensemble (9{ — d) des nombres complexes

de la forme (u + iVy/d)/2, où u et v sont des nombres entiers et

u vd (mod. 2). C'est un sous-anneau de C, dont le corps des fractions est

K Q + Qu/d.
Un réseau de K est un sous-groupe de K qui admet une base sur Z

formée de deux éléments. On dit qu'un réseau L de K est un (9{-d)-idéal
fractionnaire inversible si 0( — d) est l'ensemble des aeK tels que aL c= L.

Cela équivaut à dire que L est stable par multiplication par les éléments

de (9( — d), et est un C( —ù)-module projectif (nécessairement de rang 1).

On vérifie que cela équivaut aussi à l'existence d'un nombre rationnel

X > 0 tel que LL X(9( — d\ avec L le réseau conjugué de L. Ce nombre X

est alors noté N(L) et appelé norme de L.

Les (9( — ù)-idéaux fractionnaires inversibles forment un groupe abélien

pour la loi de composition (L, L7) i— LL (si LL X(9( — d) et LL' X'(9{ — d\
on a LL'(LL') XX'(9( — d)); son élément neutre est (9( — d) et l'opposé de L
est N(L)~1L. Les (9(-d)-idéaux fractionnaires inversibles de la forme
XC( — d) avec X e Kx sont dits principaux et forment un sous-groupe du

groupe précédent. Le groupe quotient est le groupe des classes de (9(-d)-
idéaux fractionnaires inversibles. Il s'identifie canoniquement au groupe
Pic (®( — d)) des classes de (9{ — démodules projectifs de rang 1.

Etant donné un O(-d)-idéal fractionnaire inversible L, et une base

(©!, co2) d'orientation positive de L sur Z, la forme quadratique q(x, y)
N(L)-1 | x(Dl + yco2 |2 est à coefficients entiers, primitive et de

discriminant — à : cela résulte facilement de l'égalité LL N{L)0( — d). Inversement,
étant donnée une forme quadratique ax2 + bxy + cy2 primitive et de

discriminant — d, le réseau L de K engendré par a et (b + i^/d)/2 est un
(9{ — d)-idéal fractionnaire inversible, car on a LL a(9{ — d). On vérifie que
les constructions précédentes définissent par passage au quotient des iso-
morphismes réciproques Fun de Fautre entre le groupe des classes de (9(-d)-
idéaux fractionnaires inversibles et Cl(-d), muni de la structure de groupe
définie par Gauss.
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L'élément neutre de Cl( — d) est la classe de la forme x2 -F (d/4)y2 si

à — 0 (mod. 4), celle de la forme x2 + xy + ((d +1)/4)y2 si d 3 (mod. 4).

L'opposé de la classe de ax2 -F bxy + cy2 est celle de ax2 — bxy 4- cy2.

Le lemme du § 2 permet donc de dresser la liste des éléments d'ordre < 2

de Cl( — d) (appelés classes ambiguës ou ambiges); le nombre de ces éléments

est x)

2t~1 si d ^ 12 mod. 16 et d ^ 0 mod. 32

(9) ?'2 si d= 12 mod. 16

2} si d 0 mod. 32

où £ est le nombre de diviseurs premiers de d.

Pour calculer le produit des classes de deux formes quadratiques
ax2 + bxy + cy2 et a'x2 + b'xy + c'y2 primitives de discriminant —d, on

pose 2)

6 pgcd (a, a', (b -F b')/2),

on choisit des entiers u, v et w tels que

ua + va' + w(b + b')/2 6

et on pose

a" aa'/b2 b" [uab'+ va'b + w(bb'— d)/2]/ô c" (b" 2 + <i)/4«,/.

La forme quadratique a"x2 + b"xy + c"y2 est alors à coefficients entiers,

primitive et de discriminant — d, et sa classe est le produit cherché.

En effet, aux classes des deux formes quadratiques données correspondent

les classes des (9( — d)~idéaux fractionnaires: L Za + Z(b + i^fd)/2 et

L' Za' + Z(b' + iy/d)/2. L'idéal fractionnaire LL' est engendré par les

quatre éléments

aa', (ab' + ai^fd)/2 (a'b + di«J~di)/2 (bb' — d + i(b + b')^/d)/4

et l'on a N(LL') — aa'. On vérifie facilement que oq (aa')/h et

co2 t-i é>(b" + i-s/d)/2 forment une base de LL' sur Z d'orientation positive
et que l'on a (aa')~1 | xco1 + y®2 I

2 a"xl + b"xy + c"y2, d'où le résultat.

Exemple. Le groupe Cl( — 347) est cyclique d'ordre 5 (cf. §3, exemple).

Il est engendré par la classe C de la forme réduite 3x2 + xy + 29y2, et

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 257 à 259.

2) C.-F. Gauss, Disquisitiones Arithmeticae, n° 242; cf. aussi le n° 243 pour des
méthodes plus rapides de calcul du produit.
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2C, 3C, 4C, 5C sont les classes des formes réduites dont les coefficients

sont (9, 7, 11), (9, -7, 11), (3, -1, 29) et (1, 1, 87) respectivement

§5. Lien entre h( — d) et h( — df2) x)

Soient — d un discriminant fondamental (cf. §3), et / un entier ^ 1.

Les nombres de classes primitives h( — df2) et h( — d) sont liés par une formule

simple. Pour l'établir, nous allons définir un homomorphisme de groupes

C'est dans le langage des idéaux fractionnaires que cet homomorphisme
se définit le plus aisément: à la classe d'un (9( — d/2)-idéal fractionnaire L,
v fait correspondre la classe de 0( — d)L, qui est un &{ — ù)-idéal fractionnaire.

Pour tout x e (9{ — d), inversible modulo f (9{ — d), le réseau x(9( — d)

n 0( — df2) est un (9{ — ù/2)-idéal fractionnaire. L'application qui à x associe

la classe de cet idéal définit par passage au quotient un homomorphisme
de groupes

On démontre (en utilisant le fait que « la donnée d'un réseau équivaut
à celle de ses localisés ») que la suite

est exacte, et que le noyau de u est engendré par les classes des entiers
relatifs inversibles modulo / et des unités de (9{ — d\

Un argument de comptage permet d'en déduire la formule

v: Cl(-df2) Cl(-d).

u:(&( ,/))•

((9(-d)/f&(-d)y A Cl(-df2) ± 0

h(~df2) h( —d)wVJ] (1-p Xx(p))
P\f

p premier

où l'on a posé

w

3 si d 3 et / ^ 2

2 si d 4 et / ^ 2

1 sinon,

et où x désigne le caractère de Dirichlet quadratique associé

l) C.-F. Gauss, Disquisitiones Arithmeticae, n° 253 à 256.
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au corps Q(x/ — d). On a en particulier si d > 4

(10)

où cp est la fonction d'Euler.

h(-df2) > h(-d)(p{f)

II. Le problème du nombre de classes

Dans cette partie, nous allons étudier le comportement du nombre de

classes lorsque le discriminant tend vers — oo. Compte tenu des formules (8)

de I. § 3 et (10) de I. § 5, il est légitime de restreindre notre étude aux
discriminants fondamentaux (cf. I. § 3). Dans toute la suite, — d sera un tel

Dans les derniers numéros de son exposé de la classification des formes

quadratiques, Gauss émet quelques observations concernant les tables de

nombres de classes (il avait constitué lui-même de telles tables, en particulier
pour d ^ 3000); il qualifie de surprenante l'observation suivante1): pour
chaque entier h > 1, il semble n'y avoir qu'un nombre fini de d tels que
h( — d) h. Ainsi, pour h 1, ne trouve-t-il dans sa table que les neuf
discriminants fondamentaux

(et en outre les quatre discriminants non fondamentaux —12, —16, —27, —28).

Comme nous l'avons dit dans l'introduction, Heilbronn 2) en 1934 a

démontré que, conformément à l'observation de Gauss, on a bien

Des tables étendues de nombres de classes ont été construites par
ordinateur. Buell3) par exemple a publié les valeurs de h( — d) pour
d ^ 4000000. Parmi les discriminants fondamentaux satisfaisant à cette

inégalité, le nombre de ceux pour lesquels h( — d) est égal à 1, 2, 3, 4, 5, 6,

7, 8, 9, 10 est respectivement 9, 18, 16, 54, 25, 51, 31, 131, 34, 87, et

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 303.

2) H. Heilbronn, On the class numbers in imaginary quadratic fields, Quarterly
J. of Math. (Oxford), 5 (1934), 150-160.

3) D. A. Buell, Small class numbers and extreme values of L-functions of quadratic
fields, Math, of Comp. 31 (1977), 786-796.

discriminant : on aura done h( — d) h( — d).

-3, -4, -7, -8, -11, -19, -43, -67, -163

ai) lim h( — d) +oo
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