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44 J. OESTERLE

L’exposé est divisé en deux parties:

Les resultats exposés dans la premiére partie sont dus pour I’essentiel
a Gauss !). On y montre pour commencer quil n’y a quun nombre fini
de classes de formes quadratiques de discriminant A < 0 donné (§1). On
donne un algorithme simple permettant d’obtenir un systéme de représentants
de ces classes, et de calculer le nombre }T(A) de telles classes (§2 et §3).
Une des découvertes fondamentales de Gauss est I’existence d’une structure
de groupe abélien naturelle sur l'ensemble CI(A) des classes de formes
quadratiques primitives de discriminant A (primitives signifie telles que
pged(a, b, ¢) = 1): cette structure de groupe est décrite au § 4; le lien avec
Iarithmétique des corps quadratiques imaginaires est exposé aux §4 et § 5.

En dressant une table des nombres de classes, Gauss constate expéri-
mentalement que ces nombres semblent tendre vers + oo lorsque le discri-
minant tend vers — oo (en satisfaisant a (2)). Il faudra attendre plus de cent ans,
avec les travaux de Heilbronn en 1934, pour voir cette assertion démontrée.
Se pose alors la question de dresser, pour les petites valeurs de h entier
> 1, la liste complete des A < 0 tels que E(A) = h. Cest essentiellement
I’histoire (sans démonstrations) des progres récents obtenus sur cette question
qui fait Pobjet de la seconde partie de Pexpose. Nous expliquerons le role
joué par les courbes elliptiques dans ces progres.

I. LA CLASSIFICATION DE (GAUSS DES FORMES QUADRATIQUES

§ 1. FINITUDE DU NOMBRE DE CLASSES ?)

THEOREME. Soit d wun entier > 1. Il n’y a quun nombre fini de
classes de formes quadratiques de discriminant —d.

Ce théoreme résulte des deux lemmes suivants:

LEMME 1. Toute classe contient une forme quadratique ax* + bxy + cy?
telle que |b| < a < c

1)y C.-F. Gauss, Disquisitiones Arithmeticae, 1801 (Werke, t. I), Section cinquiéme.
(Traduction frang:alse par A.-C.-M. POULLET DELISLE parue en 1807.) Dans cet
ouvrage, Gauss suppose les formes ax® + bxy + cy?* paires, cest- a-dlre telles que b
soit palr Le cas general s’y raméne facilement, en remplagant ax® + bxy + cy?
par 2ax? + 2bxy + 2cy? lorsque b est impair.

%) C.-F. GAuss, Disquisitiones Arithmeticae, n° 174.




PROBLEME DE GAUSS 45

LEMME 2. Il n’y a quun nombre fini de triplets de nombres entiers
(a, b, c) tels que b*> —4ac = —d et |b|<a<c

Démontrons le lemme 1. Soit ax? + bxy + cy* une forme quadratique
appartenant a la classe C considérée. Par hypothese cette forme est positive,
de sorte que a > 0 et ¢ > 0. Les changements de variables (x, y) > (x—¢€y, y)
et (x,y)— (x, y—ex), ou ¢ est le signe de b, ont pour effet de remplacer
(a, b, ¢) par (a, b—2¢a, a+c— b)) et par (a+c—|b|, b—2ec, c). Si donc|b| > a
ou |b| > ¢, on peut remplacer ax® + bxy + cy> par une forme équivalente
pour laquelle la quantité a + c¢ est strictement plus petite. Aprés un nombre
fini de substitutions de ce type, on trouve une forme ax* + bxy + cy”
dans C pour laquelle |b| < a et |b]| < c Cette forme, ou la forme
ex? — bxy + ay? qui sen déduit par le changement de variables (x, y)
— (y, —x), remplit les conditions du lemme 1.

Démontrons le lemme 2. Si (a, b, ¢) sont comme dans Iénoncé de ce
lemme, on a

(3) d = 4ac — b* > 4a? — a* = 3a*,

de sorte que a ne peut prendre quun nombre fini de valeurs; il en est
alors de méme de b et de ¢, puisque | b| < a et ¢ = (b*+d)/4a.

§2. FORMES QUADRATIQUES REDUITES 1)

Dans ce paragraphe, nous montrons comment la théorie de la réduction
de Gauss permet de sélectionner un représentant dans chaque classe C
de formes quadratiques de discriminant —d.

Nous savons déja que C contient une forme quadratique ax® + bxy + cy?
telle que |b| < a < ¢ (lemme 1 du §1). Peut-il y avoir plusieurs formes
de ce type dans C? En fait, la seule autre possible est ax® — bxy + cy?,
lorsquelle est dans C. Ceci vient du fait que | b| est déterminé par a
et ¢ (on a b*—4ac=—d), et que a, ¢ sont caractérisés par le fait que
pour toute forme quadratique g € C, on a

(4) a = inf (g(u)) (u#0 dans Z?);
(5) ac = inf (g(u)g(v))  (u, v non colinéaires dans Z?) .

Il nous suffit en effet de vérifier (4) et (5) pour une seule forme
quadratique g € C, par exemple la forme ax? + bxy + cy? elle-méme. Mais

Y C.-F. Gauss, Disquisitiones Arithmeticae, n® 171 et 172.
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pour celle-ci, on a q(1,0) = a, q(0,1) = c et g(x,y) = ax* — | b || xy| + cy*
> 2a—|b)) | xy | + (c—a)y?*, d’ou

q(xao)>a> si x;éo
©6) g0,y > c, si y#0
qx,y) = Qa—|b)) + (c—a) =a+c—|bl=c st xy#0,

et donc les égalités (4) et (5).
Voyons maintenant dans quels cas la forme ax® — bxy + cy? appartient
a la classe C:

LEMME. Pour que laforme q¢(x,y) = ax* + bxy + cy* (avec |b|<a<c)
soit équivalente a la forme ¢'(x,y) = ax* — bxy + cy?, il faut et il suffit
que lon ait a =|b|,a=c ou b = 0.

On a g(x,y) = g(xty,y) st a= tb, gx,) = ¢y, —x) si a =g,
q(x, y) = q'(x,y) si b = 0. Supposons 0 < | b| < a < c. S’1l existe ( >
€ SL,(Z) tel que q'(x, y) = g(oax+ By, yx+0y), on a q(a, y) = a et g(B, d) = ¢,
d’ou vy = 0 puis B = 0 en appliquant (6), et finalement (:’L E) = + 1, ce

qui est absurde.
L’étude qui précéde nous conduit a adopter la définition suivante:
une forme quadratique ax® + bxy + cy? est dite réduite si 'on a

b <a<c
b>0 s1 aestégala|b|ouac.

Nous avons alors prouvé le théoréme suivant:

THEOREME. Chaque classe de formes quadratiques de discriminant —d
contient une unique forme réduite.

La démonstration du lemme 1 du §1 fournit en fait un algorithme
permettant d’obtenir la forme quadratique réduite équivalente a une forme
donnée.

Exemple. Appliqué a la forme quadratique 9x* + 43xy + 53y? (repré-
sentée par (9, 43, 53) pour abréger), cet algorithme s’écrit

(97 43, 53) ~ (9> 253 19) ~ (99 7) 3) ~ (57 17 3) ~ (39 _13 5)

et 3x2 — xy + 5y? est la forme réduite cherchée.
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§3. UNE METHODE ELEMENTAIRE POUR CALCULER LE NOMBRE DE CLASSES ')

Soit d un entier > 1. D’aprées le § 2, le nombre i?(——d) de classes de formes
quadratiques de discriminant —d est le nombre de formes quadratiques
réeduites de discriminant —d, c’est-a-dire le nombre de triplets (a, b, ¢)
d’entiers vérifiant

b* —4ac = — d
(7) bl <a<c
b>0 si aestégala|b|ouac.

Nous savons déja que ﬁ(—d) est non nul si et seulement si —d est
congru a 0 ou a 1 modulo 4. Les conditions (7) entrainent que a, donc
aussi | b| est majoré par \/c% (§ 1, formule (3)) et que | b| est de méme
parit¢ que d. On en déduit aussitot la formule suivante, permettant de calculer
h(—d):

ProPoOSITION.  Supposons —d congrud O oua 1 modulo 4. On a:

h—d) = Y ) n(a, b)
0<b<+Vd/3 al((b2 +d)/4)
b=d(mod. 2) b<a<+(b2+d)/4

avec n(a,b) =1 silona b=0 ou a=b ou a=./(b*+d)/4, et

n(a, b) = 2 sinon.

Exemple. Calculons }?(—347). On a 10 < /347/3 < 11, d’ou le tableau
sulvant :

b (b* +d)/4 a n(a, b)
1 87 = 3.29 1,3 1,2
3 89 — —

5 93 = 3.31 — —

7 99 = 32.11 9 2

9 107 — —

dont on déduit l;(—347) = 5. Les coefficients des cinq formes réduites se
lisent sur le tableau; ce sont:

(1,1,87), (3,1,29), (3, —1,29), (9,7, 11) et (9, —7, 11).

') C.-F. Gauss, Disquisitiones Arithmeticae, n° 174 et 175.
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L’é¢tude des formes quadratiques se ramene facilement a celle des formes
primitives, c’est-a-dire celles dont les coefficients ont 1 pour plus grand
commun diviseur. En effet, si —d < 0 est congru a 0 ou a 1 modulo 4,
il existe un plus grand entier F tel que —d sécrive —dy F? avec —d,
congru & 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques
de discriminant —d, il existe un diviseur f > 1 de F et une classe C' de
formes quadratiques primitives de discriminant —df ~? tels que C = fC'

Les nombres de classes & et les nombres de classes primitives h sont
donc reliés par 1’égalité
(8) h—d) = » h(—df~?.

fIF

Lorsque F est égal a 1, ce qui équivaut a dire que d n’est pas
divisible par le carré d’un nombre premier impair et est congru a 3 (mod. 4),
a 4 (mod. 16) ou a 8 (mod. 16), on dit que —d est un discriminant

fondamental. Toute forme de discriminant —d est alors primitive et on a
W—d) = h(—ad).

§4. LE GROUPE DES CLASSES })

Cherchant a généraliser la formule classique
(*+y%) (' 24y %) = (xx' = yy)* + (xy +yx)?,

Gauss se demande pour quels couples (g, q') de formes quadratiques, il
existe une forme quadratique g” telle que 'on ait une identité

a(x, y)q'(x', y) = q"(x", y")
ou x” et y” sont des combinaisons linéaires a coefficients entiers de xx/,
xy', yx' et yy'.

Si 'on a une identité du type précédent, et si —d, —d', —d" désignent
les discriminants de ¢, ¢, q", le carré du déterminant de Dapplication
linéaire (x, y) > (x", y") (resp. (X', y') — (x", ¥")) est égal a dq'(x’, y')*/d" (resp.
d'q(x, y)*/d").

Gauss montre que lorsque g et ¢’ sont des formes primitives de méme
discriminant —d, il est possible d’obtenir une identit¢ du type ci-dessus,
avec ¢q” forme primitive de discriminant —d, et

g(x,y) = det((x,y) = (x", "), 4qlx,y) = det((x, ) (x",y").

1Y C.-F. GAuss, Disquisitiones Arithmeticae, n° 234 a 243.
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Il montre de plus que, sous ces conditions, la classe C” de ¢” ne dépend
que des classes C, C' de g, ¢, et que la loi de composition qui a (C, C')
associe C” définit sur 'ensemble Cl(—d) des classes de formes primitives de
discriminant —d une structure de groupe abélien.

De nos jours, on préfére introduire la loi de composition précédente en
interprétant Cl(—d) comme un ensemble de classes d’idéaux fractionnaires
inversibles. Pour cela, introduisons 'ensemble ¢(—d) des nombres complexes

de la forme (u + ivﬁ)/2, ol u et v sont des nombres entiers et
u = vd (mod. 2). C’est un sous-anneau de C, dont le corps des fractions est
K =20+ 0i/d

Un réseau de K est un sous-groupe de K qui admet une base sur Z
formée de deux éléments. On dit qu'un réseau L de K est un O(—d)-idéal
fractionnaire inversible si O(—d) est 'ensemble des o€ K tels que oL < L.
Cela équivaut a dire que L est stable par multiplication par les éléments
de O(—d), et est un O(—d)-module projectif (nécessairement de rang 1)
On vérifie que cela équivaut aussi a l'existence d’un nombre rationnel

A > 0 tel que LL = MO(—d), avec L le réseau conjugu¢ de L. Ce nombre A
est alors noté N(L) et appelé norme de L.

Les O(—d)-idéaux fractionnaires inversibles forment un groupe abélien
pour la loi de composition (L, L') — LL’ (si LL = AO(—d) et L'L = AO(—d),
on a LL'(LL") = A\'O(—d)); son élément neutre est O(—d) et 'opposé de L
est N(L)"'L. Les (O(—d)-idéaux fractionnaires inversibles de la forme
LC(—d) avec Ae K™ sont dits principaux et forment un sous-groupe du
groupe précédent. Le groupe quotient est le groupe des classes de O(—d)-

idéaux fractionnaires inversibles. 11 s’identifie canoniquement au groupe
Pic (0(—d)) des classes de ¢)(—d)-modules projectifs de rang 1.

Etant donné un @(—d)-idéal fractionnaire inversible L, et une base
(0, ;) d’orientation positive de L sur Z, la forme quadratique g(x, y)
= N(L)™' | x0; + yo,|* est a coefficients entiers, primitive et de discri-
minant —d: cela résulte facilement de I’égalité LL = N (L)O(—d). Inversement,
¢tant donnée une forme quadratique ax? + bxy + cy? primitive et de discri-

minant —d, le réscau L de K engendré par a et (b+i\/3)/2 est un
¢(—d)-idéal fractionnaire inversible, car on a LL = a®(—d). On vérifie que
les constructions précédentes définissent par passage au quotient des iso-
morphismes réciproques 'un de lautre entre le groupe des classes de O(— d)-

idéaux fractionnaires inversibles et CI(—d), muni de la structure de groupe
définie par Gauss.
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Lélément neutre de Cl(—d) est la classe de la forme x? + (d/4)y* si
d = 0 (mod. 4), celle de la forme x* + xy + ((d+1)/4)y* si d = 3 (mod. 4).
L’opposé de la classe de ax? + bxy + cy? est celle de ax? — bxy + cy*.
Le lemme du § 2 permet donc de dresser la liste des éléments d’ordre < 2
de Cl(—d) (appelés classes ambigués ou ambiges); le nombre de ces éléments
est 1)
2271 si d#12mod. 16 et d #* 0 mod. 32
9) 2'"?2 si  d=12mod. 16
2 si  d=0mod.32,
ou t est le nombre de diviseurs premiers de d.
Pour calculer le produit des classes de deux formes quadratiques
ax® + bxy + cy?* et ax* + b'xy + c'y* primitives de discriminant —d, on
pose ?)

8 = pged (a, ', (b+1)/2),
on choisit des entiers u, v et w tels que
ua + va' + wb+b>b)/2 = 9§,
et on pose
a’ = ad' /8, b" = [uab' +va'b+wbb' —d)/2]/5, ¢’ = (b"*+d)/4a" .

La forme quadratique a”x? + b"xy + c”"y? est alors a coefficients entiers,
primitive et de discriminant —d, et sa classe est le produit cherché.

En effet, aux classes des deux formes quadratiques données correspondent
les classes des O(—d)-idéaux fractionnaires: L = Za + Z(b—i—i\/a)/Z et

L' = Zad + Z(b’—l—iﬁ)/l L’idéal fractionnaire LL' est engendré par les
quatre ¢léments

ad , (ab' +ai/d)2, (@b+ai/d)2, (bb' —d+i(b+b)./d)/4
et 'on a N(LL) = ad’. On vérifie facilement que ; = (aa’)/0 et

W, = 6(b/’+i\/c§)/2 forment une base de LL' sur Z d’orientation positive

et que Pon a (aa)™!| xw, + yw,|? = a’x* + b’xy + ¢"y?, d’ou le résultat.

Exemple. Le groupe Cl(—347) est cyclique d’ordre 5 (cf. § 3, exemple).
Il est engendré par la classe C de la forme réduite 3x? + xy + 29y? et

1) C.-F. Gauss, Disquisitiones Arithmeticae, n° 257 a 259.

7‘) C.-F. Gauss, Disquisitiones Arithmeticae, n° 242; cf. aussi le n°® 243 pour des -
méthodes plus rapides de calcul du produit.
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2C, 3C, 4C, 5C sont les classes des formes réduites dont les coefficients
sont (9, 7, 11), (9, —7, 11), (3, — 1, 29) et (1, 1, 87) respectivement.

§5. LIEN ENTRE h(—d) ET h(—df?) 1)

Soient —d un discriminant fondamental (cf. §3), et f un entier > 1.
Les nombres de classes primitives h(—df?) et h(—d) sont liés par une formule
simple. Pour I’établir, nous allons définir un homomorphisme de groupes

v: Cl(—df?) — Cl(—d).

C’est dans le langage des idéaux fractionnaires que cet homomorphisme
se définit le plus aisément: a la classe d’un @(—df?)-idéal fractionnaire L,
v fait correspondre la classe de @(—d)L, qui est un O(— d)-idéal fractionnaire.

Pour tout xe O(—d), inversible modulo fO(—d), le réseau xO(—d)
N O(—df?) est un O(—df?)-idéal fractionnaire. L’application qui a4 x associe
la classe de cet idéal définit par passage au quotient un homomorphisme
de groupes

u: (O(—d)/ fO(—ad)* — Cl(—df?).

On démontre (en utilisant le fait que «la donnée d’un réseau équivaut
a celle de ses localisés ») que la suite

(O(—d)/ fO(—d)* > Cl(—df2) 5 Cl(—d) > 0

est exacte, et que le noyau de u est engendré par les classes des entiers
relatifs inversibles modulo f et des unités de O(—d).
Un argument de comptage permet d’en déduire la formule

h(—df?) = h(—dw™ ' f fl; (1—p~ 'x(p)

ou l'on a posé

3 st d=3 et [f>=2
w = 2 st d=4 et f=2
1 sinon,

et ou y deésigne le caractére de Dirichlet quadratique n i+ <:—d> associé
n

Y) C.-F. Gauss, Disquisitiones Arithmeticae, n° 253 a 256.
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au corps Q(\/ —d). On a en particulier si d > 4
(10) h(—df?) = h(—d)o(f)

ou ¢ est la fonction d’Euler.

II. LE PROBLEME DU NOMBRE DE CLASSES

Dans cette partie, nous allons étudier le comportement du nombre de
classes lorsque le discriminant tend vers —oco. Compte tenu des formules (8)
de 1.§3 et (10) de 1.§5, il est légitime de restreindre notre étude aux
discriminants fondamentaux (cf. 1. § 3). Dans toute la suite, —d sera un tel
discriminant: on aura donc PT(—d) = h(—d).

Dans les derniers numéros de son expos¢ de la classification des formes
quadratiques, Gauss émet quelques observations concernant les tables de
nombres de classes (il avait constitué lui-méme de telles tables, en particulier
pour d < 3000); il qualifie de surprenante 'observation suivante!): pour
chaque entier h > 1, il semble n’y avoir quun nombre fini de d tels que
h(—d) = h. Ainsi, pour h = 1, ne trouve-t-il dans sa table que les neuf
discriminants fondamentaux

-3, —4, -7, =8, —11, —19, —43, —67, —163

(et en outre les quatre discriminants non fondamentaux — 12, — 16, —27, —28).

Comme nous l'avons dit dans lintroduction, Heilbronn %) en 1934 a
démontré que, conformément a Pobservation de Gauss, on a bien
(11) lim h(—d) = +o0.

d—

Des tables étendues de nombres de classes ont été construites par
ordinateur. Buell °) par exemple a publié les valeurs de h(—d) pour
d < 4000000. Parmi les discriminants fondamentaux satisfaisant a cette
inégalité, le nombre de ceux pour lesquels h(—d) est égal a 1, 2, 3, 4, 5, 6,
7, 8, 9, 10 est respectivement 9, 18, 16, 54, 25, 51, 31, 131, 34, 87, et

1Y C.-F. Gauss, Disquisitiones Arithmeticae, n° 303.

2) H. HEILBRONN, On the class numbers in imaginary quadratic fields, Quarterly
J. of Math. (Oxford), 5 (1934), 150-160.

%) D. A. BUELL, Small class numbers and extreme values of L-functions of quadratic
fields, Math. of Comp. 31 (1977), 786-796.
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