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PROBLÈME DE GAUSS 57

distincts) associe (— l)r, on a X(n) %(n) pour la plupart des petits

nombres entiers n. La fonction ÇK(S) doit ressembler à la fonction Ç(2s).

Ces énoncés sont volontairement vagues. Les rendre précis est souvent le

nœud des démonstrations de minorations de h( — d) lorsque d tend vers co.

§3. Ce que l'on espère sur le comportement de h( — d)

On peut montrer que en moyenne (en un sens qui demande à être

précisé, ce que je ne ferai pas ici), h( — d) est équivalent à une constante

non nulle fois J~d\ déjà Gauss connaissait ce type de résultat 1).

Il n'est pas vrai par contre que h( — d)/y]d admette un minorant > 0

ou un majorant lorsque d tend vers + oo : on sait par exemple que

h{ — d)/(y/d log log d) ne tend pas vers 0 et que h( — d) log log d/yjd ne tend

pas vers + co lorsque d tend vers + oo.

On obtient cependant de façon élémentaire des majorations raisonnables

de h( — d) (raisonnable signifiant avec l'exposant ~ que l'on attend pour d),

de la forme h( — d) ^ C-J~d log d. Par exemple :

Proposition. On a pour d > 4

Compte tenu de (24) et (26), il revient au même de montrer que l'on a,

en posant %(n)

Or, pour tout nombre réel x > 0, la somme M(x) £ < yfn) est majorée
par N(x) inf ([x], [(d-l)/2]), et l'on a donc, en intégrant par parties

(27) h(—d)^n 1^/dlogd.

OO

E %(n)/n < log

n ^
X2 ^

1
X2

E 1 In<log
«'Il,/ I)2|

:) C.-F. Gauss, Disquisitiones Arithmeticae, n° 302.
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Il est possible d'obtenir des minorations raisonnables de h( — d) si l'on
admet l'hypothèse de Riemann généralisée. Ainsi par exemple, en suivant une
démonstration de Hecke, publiée par Landau 1), on obtient :

Proposition. Si la fonction zêta C)K du corps K Q + Qi-s/d
n'admet aucun zéro réel > 1 — (2/log d), on a

(28) h{-d) ^—Jd/logd.
ne

Soit ae]l/2, 1[ tel que ÇK ne s'annule pas dans l'intervalle ]a, 1[. On a

alors ^(a) ^ 0, c'est-à-dire A(C, a) ^ 0 (formule (23)). Or il résulte
de la formule (22) que A(C, a) + (a(l —a))-1 est positif pour toute classe

CeCl(-d)

C g Cl( — d), et même supérieur à 2

classe neutre. On a par conséquent

h( — d) ^ 2oc(l — oc)

e 2nt^d(f- 1-yt a)dt lorsque C est la

e-Intima-l + r^dt

Le second membre de (28) est majoré par 1 pour d < 800, par 2 pour
d ^ 5000, par 3 pour d ^ 15000. Il nous suffit donc de démontrer la

proposition pour d ^ 15000. Prenons alors oc égal à 1 — (2/log d) ; remarquons
que

e 2nt^dt adt ^ e 2nt^dt 1dt ^ e
12n/y/d log 6 ^ 1, 3 >

1/a 1dt > e-2nt/Jdta- ldÎ9

d'où

h( — d) ^ 2a(l —a) e 2nt^df- 1dt 2oc(l — oc) (-^/d/lnfTia).

L'application x i— x(2tu) T(x) étant décroissante sur
1

2'
1 on en déduit

*) E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Göttingen
Nachrichten (1918), 285-295.
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1 2
h( - d)>-(1 - a )d"12— (y/d/log d).

k ne

Si nous sommes entrés dans les détails de cette démonstration, c est

pour bien illustrer les deux points suivants :

1) Nous voyons à l'œuvre le principe général énoncé à la fin du § 2,

qui dit que si d est grand et h(-d) est petit, ^K{s) doit ressembler à

Ç(2s): en effet ÇK{s) admet un pôle en 1, alors que Ç(2s) est holomorphe

pour Re(s) > mais si d est grand et h( — d) petit, l'existence du pôle

pour doit être contrebalancée par l'existence d'un zéro de proche de 1,

d'après la proposition ci-dessus.

2) Si l'hypothèse de Riemann généralisée était démontrée, les questions

posées dans l'introduction de cette deuxième partie seraient résolues: ainsi

par exemple il résulterait de la proposition que tous les discriminants
fondamentaux — d pour lesquels h( — d) ^ 30 figurent dans la table de Buell.

§4. Minorations non effectives de h(—d)

Comme nous l'avons vu au paragraphe précédent, h( — d) est grand

(~d\
lorsque d est grand et que la fonction L(%d, s), où %d(ri) n'a pas

\n J
de zéro voisin de 1. Supposons alors que h( — d) et h( — d') soient petits

pour deux grandes valeurs de d et d' (en un sens que l'on peut préciser,
ce que je ne ferai pas ici). Les fonctions L(%d,s) et L(xd,s) ont alors
chacune un zéro voisin de 1, et l'on en déduit que la fonction zêta du

corps biquadratique Q [iy/d, i-sfd'~\ a deux zéros voisins de 1. Des estimées

élémentaires permettent d'en déduire une contradiction. Cette méthode montre
que h( — d) ne peut être petit que pour au plus un grand d. Elle est une
variante de celle utilisée par Heilbronn pour montrer que

(29) lim h( — d) — oo
d-> oo

et a été utilisée par Siegel x) pour préciser à quelle allure h( — d) tend
vers + oo : Siegel montre que pour tout s > 0, il existe un entier d(s)

tel que: h( — d) ^ s/d1~£ pour d ^ ù(e).

b C. L. Siegel, Über die Classenzahl quadratischer Zahlkörver, Acta Arithmetica 1

(1936), 83-86.
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