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PROBLEME DE GAUSS 57

distincts) associe (—1), on a Mn) = y(n) pour la plupart des petits
nombres entiers n. La fonction (g(s) doit ressembler a la fonction {(2s).

Ces énoncés sont volontairement. vagues. Les rendre précis est souvent le
nceud des démonstrations de minorations de h(—d) lorsque d tend vers oo.

§3. CE QUE L'ON ESPERE SUR LE COMPORTEMENT DE h(—d)

On peut montrer que en moyenne (en un sens qui demande a étre
précisé, ce que je ne ferai pas ici), h(—d) est équivalent a une constante

non nulle fois ﬁ ; déja Gauss connaissait ce type de résultat ).

Il n’est pas vrai par contre que 3’1(—d)/\/3 admette un minorant > 0O
ou un majorant lorsque d tend vers +o00: on sait par exemple que

h(—d)/(\/c‘i log log d) ne tend pas vers 0 et que h(—d)loglog d/\/(} ne tend
pas vers + oo lorsque d tend vers + co.
On obtient cependant de fagon élémentaire des majorations raisonnables

: . 1
de h(—d) (raisonnable signifiant avec I’exposant 3 que Pon attend pour d),

de la forme h(—d) < Cﬁ log d. Par exemple:

PROPOSITION. On a pour d > 4

27) h(—d) < ' /dlogd.

Compte tenu de (24) et (26), il revient au méme de montrer que l'on a,

en posant y(n) = (j)

n

Y umyn < logd.
n=1

Or, pour tout nombre réel x > 0, la somme M(x) = Zn<x x(n) est majorée
par N(x) = inf ([x], [(d—1)/2]), et I'on a donc, en intégrant par parties

50 _ r AM(x) _ F M), F NGO

n - X ;X . x?

:rdN(x): Y 1n<logd.

- X n<[(d—1)/2]

') C.-F. Gauss, Disquisitiones Arithmeticae, n°® 302.
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Il est possible d’obtenir des minorations raisonnables de h(—d) si l'on
admet I'hypothése de Riemann généralisée. Ainsi par exemple, en suivant une
démonstration de Hecke, publiée par Landau '), on obtient:

PRrROPOSITION. Si la fonction zéta Cyx du corps K = Q + Qi\/g
nwadmet aucun zéro réel > 1 — (2/logd), on a

(28) h(—d) > éﬂ/logd.

Soit o € ]1/2, 1[ tel que (g ne s’annule pas dans I'intervalle Jo, 1[. On a
alors (x(o) < 0, c’est-a-dire ), W A(C, o) < 0 (formule (23)). Or il résulte
de la formule (22) que A(C, o) + (ol —a))™" est positif pour toute classe

w —

C € Cl(—d), et méme supérieur a 2 J e~ ZMMNd(ir=1 4 =9t Jorsque C est la
1

classe neutre. On a par conséquent

e o]

W—d) > 2o¢(1—a)J e~ 2= 1 4 = ugy

1

Le second membre de (28) est majoré par 1 pour d < 800, par 2 pour
d < 5000, par 3 pour d < 15000. II nous suffit donc de démontrer la
proposition pour d > 15000. Prenons alors o égal a 1 — (2/log d); remarquons
que

© _ 6 _ _
J e—zm/«/dtwdt > J e_zm/‘/dt_ldt > e—lZn/x/d log 6 > 1’ 3>
1 1

1 1 _
1o = J t*"dt > J e~ 2miNdE=1ge

(0] 0O
d’ou
h(—d) > 2oc(1—oc)f e 2= g — 20(1 —a) (/d/2n)T(a) .
‘ 0

. 1 ,
L’application x +— x(2m)” *I'(x) étant décroissante sur }5, 1[, on en déduit

1Y E. LANDAU, Uber die Klassenzahl imagindr-quadratischer Zahlkérper, Gottingen
Nachrichten (1918), 285-295.

D
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1 , 2
W—d) > ;c—(l—oc)d/ = —T—C;(\/E/log d).

Si nous sommes entrés dans les détails de cette démonstration, cest
pour bien illustrer les deux points suivants:

1) Nous voyons a l'eeuvre le principe général énonce a la fin du §2,
qui dit que si d est grand et h(—d) est petit, Cg(s) doit ressembler a
((2s): en effet {x(s) admet un pole en 1, alors que {(2s) est holomorphe

1 : . n
pour Re(s) > 5; mais si d est grand et h(—d) petit, 'existence du pdle

pour {y doit &tre contrebalancée par 'existence d’'un zéro de (g proche de 1,
d’apreés la proposition ci-dessus.

2) Si 'hypothése de Riemann généralisée était démontrée, les questions
posées dans lintroduction de cette deuxiéme partie seraient résolues: ainsi
par exemple il résulterait de la proposition que tous les discriminants fon-
damentaux —d pour lesquels h(—d) < 30 figurent dans la table de Buell

§4. MINORATIONS NON EFFECTIVES DE h(—d)

Comme nous lavons vu au paragraphe précédent, h(—d) est grand
: . —d

lorsque d est grand et que la fonction L(y,, s), ou yu(n) = (——), n’a pas
n

de zéro voisin de 1. Supposons alors que h(—d) et h(—d') soient petits
pour deux grandes valeurs de d et d' (en un sens que I'on peut préciser,
ce que je ne ferai pas ici). Les fonctions L(yx,,s) et L(ys,,s) ont alors
chacune un zéro voisin de 1, et 'on en déduit que la fonction zéta du

corps biquadratique Q[iﬂ, iV/E] a deux zeros voisins de 1. Des estimées
¢léementaires permettent d’en déduire une contradiction. Cette méthode montre
que h(—d) ne peut étre petit que pour au plus un grand d. Elle est une
variante de celle utilisée par Heilbronn pour montrer que

(29) lim W(—d) = oo,

d—

et a été utilisée par Siegel ') pour préciser a quelle allure h(—d) tend
vers +o00: Siegel montre que pour tout € > 0, il existe un entier d(g)

tel que: h(—d) = ﬁl_s pour d > d(e).

1 2y .
) C. L. SieGeL, Uber die Cl hl quadratisch Bk érper : .
(1936), 83-86. ie Classenzahl quadratischer Zahlkorper, Acta Arithmetica 1
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