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Appendice: distribution de la fonction /
Théorème. Pour qu'une mesure positive p sur R soit la distribution

d'une limite de martingale dyadique partout convergente (au sens de (3)) il

faut et il suffit que l'on ait

(8)

(9)

| y | d[i(y) < oo
R

y I My) ydii(y) co
R +

Preuve. Nous identifierons X et l'intervalle [0, 1] de R où les points

dyadiques autres que 0 et 1 sont dédoublés (voir (6) et (7)). Ainsi, une fonction
continue sur X est une fonction continue sur [0, 1]\D (D est l'ensemble des

points dyadiques) admettant des limites en 0 et en 1, et, en tout point de D

autre que 0 et 1, une limite à droite et une limite à gauche. Considérons
des cas de difficulté croissante

a) p est portée par un intervalle [a, b] et charge tout sous-intervalle de

[,a, fi]. Soit / la fonction croissante sur [0, 1] dont la distribution est p.

Comme / est continue sur [0, 1], les espérances conditionnelles fn E(fjZTn)

{fTn est la n-ième tribu dyadique) convergent uniformément vers /.
b) p est portée par un intervalle [a, fi], et la fonction de répartition

hO7) h(— 005 y) est dyadique sur les paliers (intervalles de constance) Pn.
Elle est donc strictement croissante sur [a, fi]\u Pn et applique cet ensemble
dans [0, l]\u {p„}, où pneD. La fonction réciproque se prolonge en une
fonction continue / sur X, et les espérances conditionnelles fn convergent
uniformément vers / sur X.

c) p est portée par un intervalle [a, fi], et la fonction de répartition
p(x) admet un palier unique P entre a et fi, où sa valeur p n'est pas
dyadique. Etant donné s > 0, tel que s < inf(p, 1 —p), choisissons p1 e D

g
tel que | p1 — p \ < - et posons p' 2p — p1, puis choisissons p2e D tel

s
que | p2 — p' | < et posons p" 2p' — p2, et ainsi de suite. On obtient

une suite p1,p2,... pn,... contenue dans D, convergente, telle que

OO

(10) P IP„ 2-
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et

(11) I lim pn - p I < 8

Désignons par \|/„ l'application de [0,1] sur [2~n, 2~n + 1] qui applique
linéairement [0, p] sur [2~", 2~n + p„2~n] et [p, 1] sur [2~" + pn2~", 2~" + 1],

et désignons par cp„ l'application réciproque de \[/„. Soit g la fonction
croissante sur [0, 1], définie et continue sauf en p, dont la distribution
est p. Chaque fonction p ° (p„ est prolongeable par continuité sur X, et sa

fonction de répartition est \|/„(p(. — 2~"). D'après (10) et (11) on a

00

(12) I^(.)-2-) fi(.)
1

(13) lim 2" \|/„(jl(. \|/(ji(.

où i|/ est l'application de [0, 1] sur lui-même qui applique linéairement
[0, p] sur [0, lim pn] et [p, 1] sur [lim p„, 1]. Posons

00

(14) / X 9 °
1

et remarquons que les supports des g ° cpn constituent une partition de

X\{0}. D'après (12) la distribution de / est p. Pour m < n l'espérance
conditionnelle fm E(f/^~m) est constante sur [2~n, 2~" + 1] et égale à la
valeur moyenne de g ° cp„, qui est

y d(4vii) (y)

En posant

/(0) y d(i°ß) (y)

/ est limite des fm en tout point, y compris 0.

d) p est portée par un intervalle [a, h]. Choisissons un dénombrable
dense dans [0, 1], contenant 0, 1, et toutes les valeurs de la fonction de

répartition p(.) sur les paliers; soit À ce dénombrable. Fixons 0 < s < 1.

Ordonnons À en commençant par 0 et 1, de façon quelconque ensuite, et

définissons par induction suivant cet ordre une fonction yx croissante sur À,

appliquant À dans D, telle que y-^O) 0, yx(l) 1, et

(15) (1 ~ f) ^ Yl^ Yl^ ** f1 + l)
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pour tout couple (p, q) d'éléments de À tels que p > q. Soit A' l'image de À

dans l'application p —> p' 2p — y1 (p), puis y2 une fonction croissante sur

À', appliquant À' dans D, avec y2(0) 0, y2(l) 1, et

(16) (p'-q') < y i(p')-Yzi'/') < (i ip'-q')

pour tout couple (p', q') d'éléments de A' tels que p' < q', et ainsi de suite.

Il résulte de (15) (en choisissant q 0), que

s
I P' ~ P I I Yi(P) ~ P I <

2

et de (16), en posant p" 2p' — y2(p'\ que

i p"P'i< |
et ainsi de suite. A chaque p e A correspondent deux suites p(n) et

Pn ln{p{n~1]\ Qui convergent vers une même limite y(p) telle que
I Y(p) — P telle que (10) ait lieu. A partir de là on construit les

fonctions continues \|/„ appliquant [0, 1] sur [2~n, 2" + 1] de façon que, pour
chaque p e A,

YB(p) 2~n + pn2~n,

les fonctions réciproques cp„ et la fonction / comme en (14). De nouveau

/ est limite d'une martingale dyadique et / admet p pour distribution.

e) p vérifie (8). Quitte à translater p, supposons

posons p en une somme

y d\i(y) 0. Décom-

(17) ^ Z IV,
i

chaque étant à support compact [an, bj, avec p„(R) 2~" et

(18) yd\i„{y) 0.

A la normalisation près, l'hypothèse d) est vérifiée pour |i„. Il existe donc
une fonction /<"' portée par [2"", 2""+1], limite de martingale dyadique,
admettant p„ pour distribution. Remarquons que la valeur moyenne de fM
est 0. Posons
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00

(19) / I/(n).
1

Alors / est limite de martingale dyadique et sa distribution est p.

f) p vérifie (9). On la décompose encore sous la forme (17), on définit
les f{n) et / par (19). La condition est la même, et la totale de /,
/o, est nulle. En remplaçant 0 par oc dans le second membre de (18) ce

qui est possible à cause de l'hypothèse (9), on obtient f0 oc. Le théorème

est démontré.

Remarquons que la totalisation de la fonction / nécessite une seule

étape dans les cas a), b), c), d), et qu'elle est pratiquement terminée à

l'étape o (K® est réduit à {0}) dans les cas e) et f).

Dans le cas f) on peut introduire un « arbre de distribution » permettant
le calcul de f0. Il s'agit de l'arbre des mesures pei(.„>èw qui sont les

distributions de / sur les cellules C(sl5..., sj. Ainsi

JH-SI,...,£„ Pei ,...,£„, 0 "f"

W...,£n(C(eej) - pei,...,£n(X) 2~"

(n 0, 1,...; £j 0 ou 1). La condition (20) est nécessaire, mais elle n'est pas
suffisante. La théorie de la totalisation dyadique montre que se trouve
nécessairement dans l'arbre une infinité de mesures à supports compacts;
la première étape de la totalisation consiste à remplacer ces mesures par des

mesures ponctuelles ayant même masse et même centre de gravité; dans le

nouvel arbre, on recommence l'opération, et ainsi de suite, transfiniment au

besoin, jusqu'à obtenir un arbre stationnaire. Cet arbre stationnaire décrit
alors la martingale dyadique (au niveau n, on obtient la distribution de

/„). Il serait intéressant de connaître la caractérisation des arbres de

distributions des limites de martingales dyadiques.

Citations et pastiche

L Si une part de mon œuvre mathématique vient a sauver mon nom de

l'oubli, sans doute resterai-je l'analyste qui le premier a trouvé les moyens
d'intégrer toute dérivée et de calculer les coefficients de toute série trigo-
nométrique convergente de somme donnée.

Arnaud Denjoy
Notice sur les travaux scientifiques,

Paris, Hermann, 1934 (p. 5)
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