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348 P. VOGEL

Et cela implique

[ = ZH%(i)(J’)x(ip(i) = H Z (y)xi HH (L+x;;) -

i n>0 i

§ 5. LA TRACE DE JONES-OCNEANU

On se propose ici de montrer les théorémes 1-6 et 1-7.

5-1. Soit donc = une relation d’équivalence additive sur A possédant la
propriété suivante:

(P) Vn > Oa quHn’ tn(u) = tn+1[(ux 11)0,,] — tn+1[(ux 11)6;1] .

Comme o, *est égala ap™! — B~ 'o,, 0n a

tyr1[(ux 1o, '] = af " tegt, () — BT, [(ux 1)o,].

D’autre part, 'application de H, dans H,,,; qui a u associe (uxl,)o, induit
I'application 0 de E,_; dans E, (voir 3-2). La propriété (P) est donc
équivalente a4

Vo> 0,YueE,_,, fw= fOu=of tc,f(u)— B 'f(Ou),
c’est-a-dire
VueE, f)=fOw et (I+B—ac)fu)=0),

f désignant la projection canonique de E sur A.
D’autre part, E est un A-module libre de base (sq, $;,5,,..) et 'on a

\V,n > 0, eSn = Sn+1 et f(Sn) = Cn+1 ”
La propriété (P) est donc équivalente a
Vn >0, YueA, uc,=uc,,; et uc,(1+p—0ac,) =0,

et la plus petite relation = vérifiant la propriété (P) est donc la congruence
modulo I'idéal J de A engendré par les ¢léments

¢, —¢c;, n>1 et ¢ (1+B—0acy),
ce qui achéve de démontrer le théoréme 1-6.

5-2. Soit T une tresse de B,,n > 0. La classe de t,(t) modulo I'idéal I,
de A engendré par les €léments ¢; — ¢, est de la forme cP, ou ¢ représente
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la classe commune des ¢; et P est un polyndme de k[c] = Z[e, B, B~ cl.
Il en résulte que la classe de t,(tr) modulo J est représentée par cP’, P’
désignant la classe de P dans anneau A = k[c]/y+p-q . D’aprés les théo-
rémes d’Alexander et Markov, le polynéme P’ ne dépend que de 'entrelacs T.
On a ainsi associé & tout entrelacs orienté E un polyndéme Pp = P’ de
Panneau A. Cet anneau est en fait le sous-anneau de k[o, o™ 1, B, B 1]
engendré par o, B, B~ et (1+ B L.

Si x est un croisement d’un entrelacs E dessiné dans le plan, la méthode
d’Alexander permet de modifier le dessin de E sans changer le croisement x
de facon a obtenir un entrelacs E’' isotope a E et de la forme T, ou «t
est une tresse de B,. Il en résulte que les trois entrelacs E,, E_ et E,
obtenus par modification de E au voisinage de x sont isotopes a des
entrelacs de la forme 7., T_ et T, ot 'on a

—1_n 11

. =701, 1. =701, 1,=11.

On a alors dans I'algebre H, I’égalité suivante:
T, —aTg + Pt =0,
ce qui implique

PE —CXPEO+BPE_=O

+

Si E est le nceud trivial il est de la forme Il et la classe de 1, dans
le quotient de A par I, est égal 4 ¢. On a donc

PE:1

et le théoréme 1-7 est alors clair.

§ 6. UNE GENERALISATION DU POLYNOME DE JONES-CONWAY

Soit n > 0 un entier. Soit L une sous-variété différentiable compacte
orientée de dimension 1 de I’espace usuel R? entiérement contenue dans la
bande [0, 1] x R* On suppose que le bord de L est standard. C’est-a-dire
quil est formé des 2n points de coordonnées (i,j,0) avec i = 0, 1 et j
variant de 1 4 n. On suppose de plus qu'en chacun de ces points, le
vecteur tangent a L est vertical descendant, c’est-a-dire a projection nulle

sur le plan horizontal 0 x R? et 4 projection negative sur Paxe vertical
R x 0.
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