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348 P. VOGEL

Et cela implique

f Enw^f1" n E nn^+^i^)-
(pi i n > 0 i j

§ 5. La trace de Jones-Ocneanu

On se propose ici de montrer les théorèmes 1-6 et 1-7.

5-1. Soit donc une relation d'équivalence additive sur A possédant la
propriété suivante :

(P) Vn > 0, Vm e H„, tn(u) tn+1[_(uxJcr"1].

Comme cr"1 est égal à aß-1 — ß_1a„, on a

t« + i[(«x IJct"1] aß^Cjt,» - ß_1t„ + i[(MX IJJctJ

D'autre part, l'application de Hn dans Hn + 1 qui à u associe (wxl^a,, induit
l'application 0 de En... x dans En (voir 3-2). La propriété (P) est donc

équivalente à
^

Vn > 0, Vn e En_x, f(u) ee f(du) ee ocß~ ^/(n) - ß" 7(0"),

c'est-à-dire

MueE f(u) /(0n) et (1 + ß —acJ/Xn) 0

/ désignant la projection canonique de E sur A.

D'autre part, E est un A-module libre de base (s0, s1? s2> •••) et l'on a

Vn > 0, 9s„ s„+1 et /(s„) c„ + 1

La propriété (P) est donc équivalente à

Vn > 0 Vn g A, nc„ nc„+1 et wc„(l + ß —occ1) 0,

et la plus petite relation vérifiant la propriété (P) est donc la congruence
modulo l'idéal J de A engendré par les éléments

cn — c'i n>l et c1(l + ß — acq),

ce qui achève de démontrer le théorème 1-6.

5-2. Soit T une tresse de Bn, n > 0. La classe de fn(x) modulo l'idéal I0
de A engendré par les éléments ct — c1 est de la forme cP, où c représente
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la classe commune des ct et P est un polynôme de k\_c] Z[a, ß, ß-1, c\.

Il en résulte que la classe de tn(x) modulo J est représentée par cP\P'
désignant la classe de P dans l'anneau A /c[c]/1 + ß_ac. D'après les

théorèmes d'Alexander et Markov, le polynôme P' ne dépend que de l'entrelacs x.

On a ainsi associé à tout entrelacs orienté E un polynôme PE P' de

l'anneau A. Cet anneau est en fait le sous-anneau de /c[a, a"\ ß, ß~x]
engendré par a, ß, ß_1 et (l + ß)a_1.

Si x est un croisement d'un entrelacs E dessiné dans le plan, la méthode

d'Alexander permet de modifier le dessin de E sans changer le croisement x
de façon à obtenir un entrelacs E' isotope à £ et de la forme x, où t
est une tresse de Bn. Il en résulte que les trois entrelacs E+, E_ et E0

obtenus par modification de E au voisinage de x sont isotopes à des

entrelacs de la forme x +, x_ et x0 où l'on a

T= t'cTjT", T_ x'tffiV', T0 t't"

On a alors dans l'algèbre Hn l'égalité suivante :

x + — otx0 + ßx_ 0,

ce qui implique

PE+ - aPEo + ßP£_ 0

Si E est le nœud trivial il est de la forme 11 et la classe de l1 dans
le quotient de A par I0 est égal à c. On a donc

Pe 1

et le théorème 1-7 est alors clair.

§ 6. Une généralisation du polynôme de Jones-Conway

Soit n > 0 un entier. Soit L une sous-variété differentiable compacte
orientée de dimension 1 de l'espace usuel R3 entièrement contenue dans la
bande [0, 1] x R2. On suppose que le bord de L est standard. C'est-à-dire
qu'il est formé des 2n points de coordonnées (z, j, 0) avec z 0, 1 et j
variant de 1 à n. On suppose de plus qu'en chacun de ces points, le
vecteur tangent à L est vertical descendant, c'est-à-dire à projection nulle
sur le plan horizontal 0 x R2 et à projection négative sur l'axe vertical
R x 0.
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