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18 G. LION

IIT. APPLICATION AU CAS n = 2

Nous considérons désormais E = R?, espace vectoriel que nous identifions

a C. L’espace Z(R?) est, comme ci-dessus, normé par | u || = sup |u(z)|
lz| <1

(attention, u — || u || n’est pas euclidienne!); % est la boule unité de Z(R?).
Rappelons que si z = x + iy, on pose

1 [0u ou 1 [ 0u ou
ou/fz = - — — i — 7 = —|— +i—].
u/0z > (ax i ay) et Ou/oz 2 <@x + 5y>

LEMME 1. L’application u > (0u/dz, 0u/dz), de L(R?) vers C? estun
R-isomorphisme, et || u | = | du/oz| + | 0u/dz |.

Démonstration.

On a u(z) = 0u/dz z + du/dz z, d’ou | u(z) | < (| 0u/dz | + | dufdz )| z | et
en posant du/0z = re', du/0z = pe'®, on obtient

| (e ) =1+ p.

LEMME 2. Soit ue PR3, u # 0,u tel que u/||u| ne soit pas une
isométrie. Alors:

1) 1l existe v et w isométries de R? o et B >0, tels que
u=ov+ Pw e |ul| =ao+p.

2) La solution unique du probléme est donnée par
o = |0u/dz|, P =|0u/dz|, ow(z) = ouldzz, Pw(z) = ou/izz.

Démonstration. La solution explicitée convient d’aprés le lemme 1.
Démontrons 'unicite:

Soit z, non nul, tel que | u(zy) | = (2+PB)| zo |- On a par ailleurs
| u(zo) | < [ aw(zo) + Pw(zo) | < (a+P) |20 .

L’égalité des termes extrémes, jointe au signe de o et B, implique u(z,)
= w(z,); et ceci ne peut se produire que lorsque v et w sont respecti-
vement holomorphes et antiholomorphes, car v # w.

Il existe donc A et B dans C¥*, tels que

ow(z) = Az, Pw(z) = Bz,

d’ou u(z) = Az + Bz, ce qui entraine 4 = 0u/0z et B = 0u/0z, et 'on en
déduit les valeurs de o et B, puis v et w.
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Notation. On qualifiera désormais de paire (resp. d’impaire) toute iso-
métrie de déterminant + 1 (resp. —1).

Remarque. On vérifie que la frontiére de B ne contient aucun convexe de
dimension > 2; la norme u+ || u | est « presque» strictement convexe.
Le fait est important pour I'étude des isométries linéaires de ZR?), a
laquelle nous allons nous consacrer désormais.

LEMME 3. Soit ® une isométrie linéaire de £(R?) dans lui-méme.
Alors:
1) @ conserve (resp. inverse) la parité des isométries de RZ.
2) Les applications
Cu/éz v 0/Cz D(u) et cu/cz> C/Cz D(u)
(resp. dufcz v ¢/Cz ®(u) et Cu/Cz > C/Cz D(u))

appartiennent au groupe orthogonal O(2).

Démonstration. 1) Soit v et w des isométries de parités opposees;
quels que soient o, >0 avec x + B =1, on a ||av + Pw | = 1 donc
| O(xr+Pw) || = 1. Or O(av+ Bw) = a®(v) + PO(w). Puisque D(v) et O(w)
sont des points extrémaux de 4, ce sont des isométries de R?; a I'inverse
w + Pw et a®(v) + BD(w) ne sont pas des isométries; d’apres le lemme 2,
®(v) et O(w) sont de parités opposeées. Ainsi pour toute isomeétrie impaire w,
®(w) est de parité opposce a celle de @(I), ce qui implique que pour toute
parité paire v, ®(v) est de méme parité que D(I).

2) Plagons-nous dans le premier cas, et utilisons I'identification de .#(R?)
avec C? découlant du lemme 1.

St Z = (z;,2;) = (2,,0) + (0, z;) alors ®(Z) = O[(z, 0)] + D0, z,)]
d’ou dans le cas envisagé:

O(Z) = ((pl(zl)a 0) + (0, P,(2,)) .

Les applications ¢, et ©, sont clairement R-linéaires de C dans C, et en
faisant successivement z; = 0 et z, = 0, on obtient | @,(z,)| = |z, et

-1 0i(z2)| = z;]. On ramene le second cas au premier en composant @
avec I'application n: (zy, z,) = (25, zy), qui est bien une isométrie de Z(R?).

Prenons dans chaque facteur du produit C* une base orthonormée; la
matrice de @ est alors de I'un des deux types suivants:

((Dl 0 0 o,
ou
0 @, ®, 0
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(@, et @, sont des matrices 2 x 2 orthogonales). Selon les signes respectifs des
déterminants de ®; et ®, on obtient 8 composantes connexes dans le
groupe I' des isométries de Z(R?).

Soit I'; la composante neutre de I', qui est clairement isomorphe a
SO(2) x SO(2). Introduisons

C1:(2zy,25) (21, 2,), G,y:(2z1,25) (24, 2,),

et dressons la liste des composantes de I":

Iy oI’y o,y 6,60

nl’y no Iy no,1 no,0,.1

Les 4 composantes de la 17 ligne forment un groupe isomorphe a
0(2) x O(2); cest le groupe des isométries de #(R?*) qui conservent la
parité, c’est-a-dire qui ont une matrice du 1°° type. Les 2 composantes de
la colonne de gauche constituent le groupe des isométries C-linéaires de C2.
Dans ce groupe I'" opéere naturellement le groupe {I, n} noté ¢,, si bien que
I est isomorphe au produit semi-direct de SO(2) par lui-méme.

Enfin les composantes situées dans les 2 colonnes extrémes du tableau
forment le groupe des isométries de déterminant 1; on note SI' ce groupe.

Pour v et w € O(2), et u € L(R?), posons ®, (u) = vuw ™ 1.

THEOREME 2. L’application (v, w)+— @, , est une représentation linéaire
de 0O(2) x O(2) sur le groupe SI', dont le noyau a 2 éléments.

Démonstration. @, ,, est une isomeétrie, en effet:
fouw™ I < HollfullIw™ = Tul = o vuw™ w [ < ouw™ .

L’application (v, w) — @, ,, est évidemment un morphisme de groupes; mon-
trons que cette application envoie SO(2) x SO(2) sur I';.

Soit (z,, z,) — (Az{, nz,) un element de I';(JA|=]|u|=1). 1l s’agit de trouver
1 1

v et w de module 1 tels que vw™! = A et vw™! = p Cest-a-dire v> = Ap
et w = vA~!; le probléme admet donc deux couples opposés pour solutions.

On en déduit enfin que lapplication étudiée applique O(2) x O(2) sur
ST, composante sur composante, selon le schéma suivant:

pour v paire, w impaire: @, , enl,
pour v impaire, w paire: @D, , e nc,o,0,

pour v et w impaires: ®, ,e0,0,;.
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