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PROBLEME DE GAUSS 53

le plus grand d correspondant est respectivement 163, 427, 907, 1555,
2683, 3763, 5923, 6307, 10627, 13843. |

Cela semble suggérer que tous les discriminants fondamentaux —d pour
lesquels h(—d) < 10 figurent dans la table de Buell. Peut-on le prouver?
Cest & ce type de question qu’est consacrée la fin de 'exposé. On s’intéresse
a ce probléme car les discriminants pour lesquels h(—d) est petit possedent
comme nous le verrons des propriétés arithmétiques remarquables. Nous
allons commencer par décrire les deux outils essentiels pour I’étude de
h(—d), a savoir les nombres de représentations des entiers par les formes
quadratiques et les fonctions z€ta associées.

Les formes quadratiques de discriminant —3 et —4 ont des automor-
phismes distincts de +1 dans SL,(Z). Pour éviter les complications

techniques qui en résultent, nous supposerons dans la suite d # 3 et d # 4
(donc d=17).

§ 1. REPRESENTATION DES ENTIERS PAR LES FORMES QUADRATIQUES

Soit g une forme quadratique de discriminant —d (distinct de —3 et
—4). Le nombre de représentaticns primitives d’un entier n > 1 par g,
compteées au signe pres, est

(12) r(q) = %Card {w,v)eZ?| qu,v) = n et pged(u,v) = 1}.

Ce nombre ne dépend que de la classe C de la forme quadratique
g, et on le note aussi r,(C). Soit ax® 4+ bxy + cy? la forme réduite appar-
tenant & C. On a 3a®> < 4ac — b* < 4c* (inégalité est stricte car d # 4),

dou a < \/d/3 et ¢ > \/E/Z. On ar, (C)#0,etsinz=1estun entier <c

tel que ,(C) # 0, on a nécessairement n = a et r,(C) = 1 (L. § 2, formule (6)).
On en déduit |

(13) Y mnO<1< Y 0.
n<Vdj2 n<vd/3
Introduisons le nombre total des représentations primitives, comptées au

signe prés, de l'entier n par les différentes classes de formes quadratiques
de discriminant —d:

(14) r(—d) = Y r(C).

CeCl(—ad)
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On déduit de (13) un encadrement du nombre de classes

(15) Y, T{—d) <h-d)< ) r(-d,
n<vJd/2 n<vd/3
ce qui montre que I’¢tude de h(—d) est liée a celle des nombres r,(—d).
Il n’existe 4 ma connaissance aucune formule simple permettant pour une
classe C donnée de calculer r,(C). Par contre, Gauss a obtenu le résultat
remarquable suivant *):

THEOREME. Pour tout entier n > 1,r,(—d) est le nombre de b (mod. 2n)
tels que b* = —d (mod. 4n).

La démonstration de Gauss est trés élégante: Soit (¢;) un systeme de
représentants des classes de formes quadratiques de discriminant —d. Si b
est un entier tel que b? sécrive —d + 4nc, la forme quadratique nx?
+ bxy + cy* a pour discriminant —d et s’écrit g;(ux+wy, vx+ty) pour un

. P : : u w
unique indice i et une certaine matrice ( . ) € SL,(Z). On a g;(u, v) = n,

v
et (u, v) est déterminé au signe pres par b (mod. 2n) car I et —I sont
les seuls automorphismes de g; dans SL,(Z). Inversement, chaque représen-
tation primitive de n par l'une des formes g; s’obtient par ce procédé a
partir d’'un unique b (mod. 2n) tel que b?> = —d (mod. 4n).

En décomposant Z/4nZ en ses composantes primaires, on obtient la forme
équivalente suivante de I’énoncé précédent:

COROLLAIRE. Pour que r,(—d) # 0, il faut et il suffit que n soit de la
forme d'p* ..p,™, avec d un diviseur de d sans facteurs carrés,

Pi> s Pm des nombres premiers deux a deux distincts modulo lesquels —d
est un carré non nul, et oy,..,o, des entiers =1. On a alors
r(—d) = 2™

De la formule (15) et du corollaire ci-dessus, on peut retenir le principe
suivant:

PRINCIPE. Si d est grand et h(—d) est petit, il y a peu de petits
entiers n qui soient représentés par une forme quadratique de discriminant
—d, et peu de petits nombres premiers modulo lesquels —d est un carré.

Illustrons ceci dans le cas particulier ou d = 163. On a h(—163) = 1
et x2 + xy + 41y est la seule forme quadratique réduite de discriminant

1y C.-F. Gauss, Disquisitiones Arithmeticae, n° 167, 168 et 180.
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-—163. D’aprés le début de ce paragraphe, on a r,(—163) = 0 pour
2 < n < 40. Par suite, —163 n’est un carré modulo aucun des nombres
premiers < 39, et le corollaire au théoréme ci-dessus implique que si
r(—163) # 0 et n < 412, nécessairement n est premier. Ceci explique
pourquoi la suite (découverte par Euler): 41, 43, 47, 53, 61, .., formée
par les valeurs de x? + x + 41 pour x > 0 ne comporte que des nombres
premiers jusqu’a 1601 (=392 +39+41).

§ 2. FONCTIONS ZETA

Il est fructueux de réinterpréter les résultats du paragraphe précédent
en introduisant des séries de Dirichlet génératrices: pour toute forme qua-
dratique g de discriminant —d, la série de Dirichlet

1 _
(16) Ugq, s) = 5 Y qlu, v)~*
(u,v)eZz-{(0,0)}

converge absolument pour Re(s) > 1 et 'on a

(17 a.9) = 429 3. nlan

e.9]

ou {(s) = ) n~* est la fonction zéta de Riemann. Comme (g, s) ne dépend

n=1

que de la classe C de g, on I’écrit aussi {(C, s).
La fonction {(g, 5) jouit de remarquables propriétés analytiques: la fonction

(18) Mg, s) = 24*2m) ~*T(s)K(g, 5)

admet un prolongement méromorphe a C, avec pour seuls poles des poles
simples en 0 et 1 de résidus —1 et 1, et vérifie Péquation fonctionnelle
Alg, 1 —s) = A(q, ). En effet, la fonction théta

(19) 6g,t) = > exp(—qn, m)27tt/ﬂ)

(n,m)e Z2

satisfait d’apres la formule sommatoire de Poisson a I’équation fonctionnelle
(20) 0(g, t7%) = 16(q, 1) ;

on a, par échange de la somme et de l'intégrale,

(21) Alg, 5) = JOO [0(g. )—1] ¢ dt,
0
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