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le plus grand d correspondant est respectivement 163, 427, 907, 1555,

2683, 3763, 5923, 6307, 10627, 13843.

Cela semble suggérer que tous les discriminants fondamentaux — d pour
lesquels h( — d) ^ 10 figurent dans la table de Buell. Peut-on le prouver?
C'est à ce type de question qu'est consacrée la fin de l'exposé. On s'intéresse

à ce problème car les discriminants pour lesquels h( — d) est petit possèdent

comme nous le verrons des propriétés arithmétiques remarquables. Nous
allons commencer par décrire les deux outils essentiels pour l'étude de

h( — d\ à savoir les nombres de représentations des entiers par les formes

quadratiques et les fonctions zêta associées.

Les formes quadratiques de discriminant —3 et —4 ont des automor-
phismes distincts de ±1 dans SL2(Z). Pour éviter les complications
techniques qui en résultent, nous supposerons dans la suite d ^ 3 et d / 4

(donc d^l).

§ 1. Représentation des entiers par les formes quadratiques

Soit q une forme quadratique de discriminant —d (distinct de —3 et
— 4). Le nombre de représentaticns primitives d'un entier n ^ 1 par q,

comptées au signe près, est

(12) rn(q) - Card {(u, v) e Z2 | q(u, v) n et pgcd (u, v) 1}

Ce nombre ne dépend que de la classe C de la forme quadratique
q, et on le note aussi rn(C). Soit ax2 + bxy + cy2 la forme réduite appartenant

à C. On a 3a2 ^ 4ac — b2 < 4c2 (l'inégalité est stricte car d ^ 4),

d où a ^ y/d/3 et c > ^Jd/2. On a ra(C) 0, et si n ^ 1 est un entier < c
tel que rn(C) ^ 0, on a nécessairement n a et rn(C) 1 (I. § 2, formule (6)).
On en déduit

Introduisons le nombre total des représentations primitives, comptées au
signe près, de l'entier n par les différentes classes de formes quadratiques
de discriminant — d :

(13) £ rJC) < 1 < X rJC).
n^Vd/2 n^Vd/3

(14) r„(~d) L ''„(C)
CeCl(-d)
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On déduit de (13) un encadrement du nombre de classes

(15) I r„(-d)s: h{-d)^£
n^Jd/2 n^Vd/3

ce qui montre que l'étude de h( — d) est liée à celle des nombres rn( — d).

Il n'existe à ma connaissance aucune formule simple permettant pour une
classe C donnée de calculer rn(C). Par contre, Gauss a obtenu le résultat

remarquable suivant x) :

Théorème. Pour tout entier n ^ 1, rn( — d) est le nombre de b (mod. 2n)

tels que b2 —d (mod. 4n).

La démonstration de Gauss est très élégante: Soit (qt) un système de

représentants des classes de formes quadratiques de discriminant — d. Si b

est un entier tel que b2 s'écrive —d + 4ne, la forme quadratique nx2

+ bxy + cy2 a pour discriminant — d et s'écrit qt (ux + wy, vx + ty) pour un

et (u, v) est déterminé au signe près par b (mod. 2n) car / et — I sont
les seuls automorphismes de qt dans SL2(Z). Inversement, chaque représentation

primitive de n par l'une des formes qt s'obtient par ce procédé à

partir d'un unique b (mod. 2ri) tel que b2 —d (mod. 4n).

En décomposant Z/4nZ en ses composantes primaires, on obtient la forme

équivalente suivante de l'énoncé précédent :

Corollaire. Pour que rn( — d) ^ 0, il faut et il suffit que n soit de la

forme d'pf1 pma, avec d' un diviseur de d sans facteurs carrés,

Pi,..., pm des nombres premiers deux à deux distincts modulo lesquels —d

est un carré non nul, et am des entiers ^1. On a alors

De la formule (15) et du corollaire ci-dessus, on peut retenir le principe
suivant :

Principe. Si d est grand et h( — d) est petit, il y a peu de petits
entiers n qui soient représentés par une forme quadratique de discriminant

— d, et peu de petits nombres premiers modulo lesquels —d est un carré.

Illustrons ceci dans le cas particulier où d 163. On a h(—163) 1

et x2 H- xy -T 41y2 est la seule forme quadratique réduite de discriminant

J) C.-F. Gauss, Disquisitiones Arithmeticae, n° 167, 168 et 180.

rn{--d) 2-
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- —163. D'après le début de ce paragraphe, on a rn(—163) 0 pour
2 ^ n < 40. Par suite, —163 n'est un carré modulo aucun des nombres

premiers ^ 39, et le corollaire au théorème ci-dessus implique que si

rn{—163) / 0 et n < 412, nécessairement n est premier. Ceci explique
pourquoi la suite (découverte par Euler): 41, 43, 47, 53, 61, formée

par les valeurs de x2 + x + 41 pour x ^ 0 ne comporte que des nombres

-premiers jusqu'à 1601 392 + 39 + 41).

§ 2. Fonctions zêta

Il est fructueux de réinterpréter les résultats du paragraphe précédent
en introduisant des séries de Dirichlet génératrices : pour toute forme
quadratique q de discriminant — d, la série de Dirichlet

(16) Ç(4, s) =7 £
^ (u,v)e Z2-{(0,0)}

converge absolument pour Re (s) > 1 et l'on a

oo

(17) t,(q, s)Ç(2s) £
n= 1

oo

où Cfsj £ n~sestla fonction zêta de Riemann. Comme Çfcy, s) ne dépend
n 1

que de la classe C de q, on l'écrit aussi Ç(C, s).

La fonction Ç(q, s) jouit de remarquables propriétés analytiques : la fonction

(!8) A{q, s) 2ds/2(2n)-T{s)^q, s)

admet un prolongement méromorphe à C, avec pour seuls pôles des pôles
simples en 0 et 1 de résidus — 1 et 1, et vérifie l'équation fonctionnelle
A(q, 1 — 5) A (q, s). En effet, la fonction thêta

(19) t) Y exP — m)2nt/^/d)
(n, m) e Z2

satisfait d'après la formule sommatoire de Poisson à l'équation fonctionnelle

(20) 9(g, t"1) td(q, t) ;

on a, par échange de la somme et de l'intégrale,

{* 00

(21) Ml,s) [0(4, t) -1] xdt,
J 0
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