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~

K, n BR 1S a subgroup of lower dimension, we have K = K, n BRSBR
The Iwasawa decomposition of GR, shows that KBR = GR BR Now
O; = Bg  Bgs;Bg, and By s;Bg = Uy ;5,Bg, where Uy ; corresponds to the
positive roots PB; and (if 2B, is a root) 2pB,. Since Ug,: < GR,, this
completes the proof of (2.12). Note 0l/§R = l/K mBR Since Uy ; 1is
homeomorphlc to a real vector space of dimension n; = my; + m,;;, and

l/BR i1s compact, we also conclude that (OL/BR is a sphere of dimension n;,
and that 0O, — (DL/BR has a local section. This completes the proof of
Theorem 5.3. ]

Now let %/ be the building associated to the topological Tits system
of (5.3). To prove Theorem 5.1, it is enough to show (as in § 4):

(54) TueoreM (Quillen). (Q,,G)" acts freely on Bgx, with orbit space
G/K.

Proof. Bgi 1s a quotient space of (Q,,G)" x K/Cgt, x A, where A is
the Cartan simplex in ty; (here we are using (5.2); note that (L,,G)" n P"
= G° = K). Hence the orbit space of the (€,,G)"-action is a quotient of
K/Cgt,, x A. As in the proof of (4.2), we see that the equivalence relation
here coincides with that of Theorem 1.9. Hence the orbit space is G/K,
as desired. To see that the action is free, we introduce the space of
special paths %4 path of the form f(e*™)exptX with f €(Q,,G) and
X e m. The proof now proceeds exactly as in (4.2); details are left to the
reader. []

The other results of § 4 also go through: ¥k is (L,,G)*—equivariantly
homeomorphic to the building %k, and if X, Y e m, exp X = exp Y implies
exp tX = f exptY, where f € (Q,,G)".

§ 6. EXAMPLES

In this section we discuss six examples, the first four of which arise
in the Bott periodicity theorems (§ 7). The first and last examples are
discussed in some detail, the others are only sketched.

(6.1) Q(SU(2n)/Sp(n)). This is perhaps the simplest nonsplit example. SU(2n)
has an involution o given by o(4) = JAJ !, where J is the matrix

0 —1I
(I 0 ) The fixed group K is Sp(n). The extension of ¢ to SL(2n, C)
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is given by the same formula, so the corresponding real form is SL(n, H)
= GL(n, H) n SL(2n, C). For convenience we now make the obvious change

. 0 —1
of basis transforming J into a direct sum of 2 x 2 matrices <1 0 )

ag
ag
In this basis t,; consists of the diagonal matrices a =

a

with the a; pure imaginary.

Hence Cytm = []) Sp(1), Ngtm = Y. [ Sp(1), and the relative Weyl
group Wy ¢ 1s Zn. The root systems are described as follows. In the usual
notation, the root system ® of SU(2n) consists of

(+(e—e) 1 <ij<2mi#j}.

Clearly @y = {+ (e;—¢;41):i0dd}. If aety is as above, let f(a) = a;.
Then the restricted root system X consists of {+ (fi— f;): 1 < i,j < n:i #j},
and so has type A,_;. Moreover it is clear that the multiplicities are all
equal to four. Thus the extended Satake diagram is

O 9 Oo—
Otl o‘2n |
and the extended Dynkin diagram is
—aio(4)
0(1 4 e L &y, — 1
4 4

Note that the parabolic subgroup Q (obtained from the black nodes of the
Satake diagram) is just the isotropy group of the standard flag C? = C* -
< C*"~% < C?". The corresponding “quasi-Borel” subgroup Q° (minimal
parabolic, in the standard terminology) is then the isotropy group of the
complete quaternionic flag H' < H*> - < H" (in SL(n, H)). The little K,
subgroups (0eX) are all Sp(2)’s.
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Now consider the involution t on L,,SL(2n, C) = SL(2n, C[z,z"']). If
f2) =Y A2 (tf) () = Y. JA,J 17 Hence the fixed group L(, is just
SL(n,H[z, z~1]). Since we know that the affine Weyl group W of type
A,_; has Py u(t) = H:=1 (1—t)~1, the extended Dynkin diagram above
shows immediately that QSU(2n)/Sp(n)) has torsion—free homology, with
Poincaré series H?:l (1—t*)~1. For more applications of this approach,

see [9] and § 7.

(6.2) Q(SO(2n)/U(n)). For convenience we take n = 2k, k = 2. Let J be as
in (6.1) and define o(4) = JAJ ™ '(4eSO(2n)). Then K = U(n), embedded as

B
—B A
Then t,, consists of matrices

the matrices < > Now make the same change of basis as in (6.1).

—a; : . -
where A, =< > Since the original root system ® consists of
al

{+ e te:1<ij<ni+#j}, where e; denotes projection on the ith
2 x 2 block in t, clearly > has type C, and consists of + (f;, — f;), + 2f;,
where f(A) = a;. We have ® = {+ (¢;+¢;4,):iodd} and Wg x = ) |3 .
The simple roots f; — f;,; have multiplicity 4, whereas 2 f; has multiplicity
one. Thus the extended Satake diagram is

Ook—1
%o Aok
and the extended Dynkin diagram is
ao Ol
o = o - &= o
1 4 4 1
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(Here the usual basis e;, —e,, e, — €3, €,_1 — €,,¢,-; + ¢, for ® has been
replaced by the basis

ey + ey, —Cy — €3,63 + €4, —€4 — €5, €y T €p,€h—1 — €y

In particular the highest root is now e; — e,).
(6.3) (Q(SU(n)/SO(n)). Here the involution on SU(n) is o(4) = A. Hence we
are in the split case and everything is transparent:

Gr = SL(n, R), (L, SL(n, C))' = SL(n, R[z, z~']), etc.

The Satake and Dynkin diagrams are just the Dynkin diagram for A,_;
(all Satake nodes white, all multiplicities equal one). For further details and
applications, see [9].

(6.4) (Q(Sp(n)/U(n)). Embed Sp(n) in SU(2n) as usual and define o(4) = A.
A B
The fixed group is U(n) embedded as matrices ( B A) with A4, B real.

Again we see that we are in the split case; the associated real form
Gg is Sp(n, R), L}, is Sp(n, R[z, z7 '], etc. The extended Dynkin diagram is

ao un
e = ® ® & ]
1 1 1 1

We can conclude e.g. that QSp(n)/U(n) has mod 2 Poincaré series
[1,_, @—¢*1) "' (cf. Theorem 5.9).

(6.5) QS". Assume n = 2k + 1; the case n even is similar. Define an
involution & on SO(2k+1) by o(4) = eA4e™*, where

1
Then K = S(O(1) x O(2k)) = O(2K), so K' = SO(2k). The corresponding real
from Gpg consists of matrices (a,ll A) in SOQ2k+1, C) with a,, and A4

real and the remaining entries pure imaginary. In fact (as in easily checked)
Gr = SO(1, 2k). The torus ty, is the set of matrices
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and hence the relative Weyl group has order 2

—1

(generated by ).

—_—

1

Using the usual notation for ®, ®, = {+ (e;—e;), + ¢,:1,j, k # 1}. Thus X
has type A, (no doubled roots) and the multiplicity of its one "ositive
root is 2k — 1. The extended Satake diagram is

— = °
Ol
and the extended Dynkin diagram is
- (XO o0 O(l
. °
2k—1 2k—1

(The symbol oo indicates that sys; has infinite order.) The groups
K,, K, are both SO(2k)’s. In particular we obtain a model for QS" with
one cell in each dimension of the form i(n—1).

(6.6) QCP" ! This example serves to illustrate two phenomena not en-
countered above: a nontrivial involution on the Satake diagram, and a
restricted root system which is not reduced. Take G = SU(n) and define
o(4) = eAe, where ¢ is as in (6.5. Thus K = S(U(1)x U(n—1)) and
G/K = CP" . The corresponding real form of SL(n, C) is denoted SU(1, n—1)

and is described as in (6.5): matrices <a,11 A) in SL(n, C) with a,,,

A real and the remaining entries pure imaginary. The torus t,, consists of
matrices
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O
O Q

0

with a pure imaginary. Here we are taking as Cartan subalgebra in
su(n) the matrices

S Q
Q o

Cn

Using this Cartan subalgebra, a simple system of roots oy, a,_; for @
is given by the following table: '

0l 2a + b — c;

o, —2a + ¢c3 — ¢4

O Ciri — Ciyy (3<i<n=2)
oy 1 b + c,

The highest root o, = o, + o, + ... + o,_, then takes the value 2b. The
action of o on these roots is given by o;— —;(2<i<n—2) and oo,
= 0, + o3 + = + a,_. Thus @, is the span of a,, - o, _,, and the extended
Satake diagram is

AN ol

Furthermore the restricted root system X has type BC; (type A, with
doubled root). Indeed if B is defined by

0 b
Bl b O = b,
0

we see that B has multiplicity 2n — 4 and 2B has multiplicity one
(2 restricts to 2f). Hence the extended Dynkin diagram is

—2B o0 B
o— -
1 2n—4,1
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Following the procedure discussed in §5, we have at once that Gy
is all of SU(n), so Kg = K = U(n—1). Note K/Cgty; = S*"7°. On the other
hand K,; = SO(2) (G, is the SU(2) in the upper left corner). From the
Dynkin diagram we conclude that our model for QCP"~! has one cell in
each of the dimensions 0, 1, 2n — 2,2n — 1,4n — 4, 4n — 3, ... in other words,
the cell series is (1+1) (1+t*"~2)~ 1. (Recall that the affine Weyl group of
type /Il is just the free product Z/2 = Z/2, so that the Bruhat cells are
indexed by 1, sq, 5;50, S0515¢, etc. By the above remarks, s, receives weight
one and s; weight 2n — 3, hence our formula.)

§7. BOTT PERIODICITY

Bott’s theorem, in its original form [6], is a general statement about
the range in which certain maps K/L AR QG/K are homotopy equivalences.
The periodicity theorems proper are then deduced from this, taking
G, K, L to be suitable classical groups. In this section we derive a version
of Bott’s theorem by showing that in many cases the map ¢ is a homeo-
morphism onto a Schubert subspace of ((G/K); then one merely counts
cells. In fact, in these cases we will be able to read off the desired range
directly from the Dynkin diagram of G/K.

We assume that G is simple and simply-connected. (As usual, the essential
point is that G/K is simply-connected; then we can if necessary replace G
by its universal cover.) Let A:[0,1] - G be a path of the form A(¢)
= exp tX, where X belongs to the coweight lattice J,. In otherwords,
X ety and exp X is central in G. Then for all ke K, the path o,
= AkAT' k™1 actually lies in (Q,,G)*; see the proof of 42. Hence A o,
defines a Bott map K/C A 2 (2,,6)" (=QG/K). Identifying J,, with the group
of paths A as above, the most interesting A are obviously the fundamental
coweights ¢; dual to the simple restricted roots B;: B;(g;) = 9;;(1<i,j<)).
Among these one may single out the very convenient class of miniscule
coweights. These are the g; dual to a miniscule root Pi-1.e. a simple root
which occurs with coefficient one in the highest root B,. The miniscule
coweights are precisely the nonzero elements of the coweight lattice which
are also vertices of the Cartan simplex. They exist whenever the root
system is reduced and not of type G,, F, or Eg; in terms of the Dynkin
diagram, they correspond to nodes on the ordinary diagram which are
conjugate to the special node —a, under an automorphism of the extended
diagram. Thus for example in type A, every simple root is miniscule,
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