

Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	34 (1988)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
 Artikel:	 AN ELEMENTARY PROOF OF THE STRUCTURE THEOREM FOR CONNECTED SOLVABLE AFFINE ALGEBRAIC GROUPS
Autor:	Dokovi, Dragomir Ž.
Rubrik	
DOI:	https://doi.org/10.5169/seals-56599

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 22.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

The group of all invertible $n \times n$ upper triangular matrices will be denoted by B_n . Its subgroup consisting of all diagonal matrices is denoted by D_n . We have $B_n = U_n \rtimes D_n$ where U_n is the closed connected subgroup of B_n consisting of all unipotent elements of B_n .

We start with some preliminary facts.

THEOREM 1 (Lie-Kolchin). *Every connected solvable affine algebraic group can be embedded in some B_n as a closed subgroup.* \square

COROLLARY. *If G is a connected solvable affine group then $G' \subset G_u$.* \square

THEOREM 2 (Chevalley). *If N is a closed normal subgroup of an affine group G then there exists a homomorphism $f: G \rightarrow GL_n(k)$ such that $\text{Ker } f = N$.* \square

For the proofs of Theorems 1 and 2 see, for instance, [5, Theorems 6.7 and 5.1.3].

LEMMA 1. *If $f: G \rightarrow H$ is a surjective homomorphism of affine algebraic groups and $N := \text{Ker } f$ then:*

- (i) $f(G^0) = H^0$;
- (ii) $f(G_u) = H_u$ and $f(G_s) = H_s$;
- (iii) $\dim G = \dim N + \dim H$;
- (iv) *If N and H are connected then G is connected.*

Proof. For the proofs of (i) and (iii) see for instance [4, Section 7.4]. (ii) follows from the fact that f preserves the Jordan decomposition [4, Theorem 2.4.8]. We shall sketch the proof of (iv). Since N is connected, we have $N \subset G^0$. By (i) we have $f(G^0) = H^0 = H$, and consequently $G = NG^0 = G^0$. \square

We need a lemma to prove the centralizer theorem. For a more general version of this lemma see [2, Proposition (9.3)].

LEMMA 2. *Let N be a closed normal connected abelian unipotent subgroup of an affine group G and let $s \in G_s$. Then $M := \{sus^{-1}u^{-1} : u \in N\}$ is a closed connected subgroup of N , the multiplication map $\mu: M \times Z_N(s) \rightarrow N$ is bijective, and $Z_N(s)$ is connected.*

Proof. Since N is abelian, the map $f: N \rightarrow N$, defined by $f(u) = sus^{-1}u^{-1}$, is a morphism of algebraic groups whose kernel is $Z_N(s)$ and image M , so M is a closed connected subgroup of N . If $x \in M \cap Z_N(s)$ then $x = sus^{-1}u^{-1}$ for some $u \in N$. Since $usu^{-1} = x^{-1}s = sx^{-1}$ is semisimple and x is unipotent, the uniqueness of the Jordan decomposition implies that $x = 1$. Hence $M \cap Z_N(s) = 1$ and so μ is injective. By Lemma 1 (iii) we have $\dim N = \dim M + \dim Z_N(s)$, which implies that the homomorphism μ is also surjective, i.e., $MZ_N(s) = N$. The same argument shows that $MZ_N(s)^0 = N$, and so $Z_N(s)$ must be connected. \square

THEOREM 3. *If G is a connected solvable affine group and $s \in G_s$ then $Z_G(s)$ is connected and $G = G_u Z_G(s)$.*

Proof. We use induction on $\dim G$. If G is abelian the assertions are trivial. Otherwise let N be the last non-trivial term of the derived series of G . By the Corollary of Theorem 1, N is unipotent. We now apply Theorem 2 to this G and N . Let f be as in that theorem. We shall write \bar{x} for $f(x)$ and \bar{G} for $f(G)$.

Let $z \in G$ be such that $\bar{z} \in Z_{\bar{G}}(\bar{s})$. Then $szs^{-1}z^{-1} \in N$. By Lemma 2 there exists $u \in N$ and $v \in Z_N(s)$ such that $szs^{-1}z^{-1} = sus^{-1}u^{-1} \cdot v$. Since v commutes with u and s , and $zsz^{-1} = v^{-1} \cdot usu^{-1}$, it follows that $v = 1$. Thus $u^{-1}z \in Z_G(s)$ and consequently we have a short exact sequence

$$1 \rightarrow Z_N(s) \hookrightarrow Z_G(s) \rightarrow Z_{\bar{G}}(\bar{s}) \rightarrow 1.$$

By Lemma 2, $Z_N(s)$ is connected. By Lemma 1 (iii) we have $\dim \bar{G} < \dim G$. By induction hypothesis, we conclude that $Z_{\bar{G}}(\bar{s})$ is connected and that $\bar{G} = (\bar{G})_u \cdot Z_{\bar{G}}(\bar{s})$. Now Lemma 1 (iv) implies that $Z_G(s)$ is connected. By part (ii) of the same lemma we have $f(G_u) = (\bar{G})_u$ and so $f(G_u Z_G(s)) = (\bar{G})_u Z_{\bar{G}}(\bar{s}) = \bar{G}$. Since $N \subset G_u$, it follows that $G = G_u Z_G(s)$. \square

We now proceed to prove the main results about the structure of connected solvable affine groups. But first we need two lemmas.

LEMMA 3. *Let $S \subset B_n$ be a commuting set of semisimple elements. Then there exists $b \in B_n$ such that $b^{-1}Sb \subset D_n$.*

Proof. It is an elementary fact of linear algebra that there exists $a \in GL_n(k)$ such that $a^{-1}Sa \subset D_n$. Hence if $M_n(k)$ is the algebra of n by n matrices over k and A its subalgebra generated by S , we know that A is semisimple (and commutative). Let $V := k^n$ be the space of column

vectors and let e_1, \dots, e_n be its standard basis. We shall view V as a left $M_n(k)$ -module via matrix multiplication. The subspace V_i spanned by the vectors e_1, \dots, e_i is an A -submodule of V for each i . Since A is semisimple, there exist $v_i \in V_i \setminus V_{i-1}$, $1 \leq i \leq n$, such that $Av_i = kv_i$. Thus if b is the matrix whose i -th column is v_i , $1 \leq i \leq n$, then $b \in B_n$ and $b^{-1}Sb \subset D_n$. \square

LEMMA 4. *If G is a connected solvable affine group, $T \subset G_s$ a closed subgroup, and $G = G_u T$ then T is a torus and $G = G_u \rtimes T$.*

Proof. By the Lie-Kolchin theorem we may assume that G is a closed subgroup of some B_n . By using the projection map $B_n \rightarrow D_n$ we obtain a short exact sequence $1 \rightarrow G_u \hookrightarrow G \xrightarrow{p} D \rightarrow 1$, where $D \subset D_n$ is a torus. Since $D = p(G) = p(G_u T) = p(T)$, Lemma 1 (i) implies that $p(T^0) = D$. Thus $G = G_u T^0$ and using $T \cap G_u = 1$ we conclude that $T = T^0$. In particular T is abelian and by Lemma 3 we may assume that $T \subset D_n$, i.e., $T = D$. Since $B_n = U_n \rtimes D_n$, $G_u \subset U_n$, $T = D \subset D_n$, and $G = G_u T$, it follows that $G = G_u \rtimes T$. \square

THEOREM 4. *Let G be a connected solvable affine group. Then $G = G_u \rtimes T$ where T is a maximal torus. In particular, G_u is connected.*

Proof. We use induction on $\dim G$. Assume first that $G_s \subset Z(G)$. Then $G_s = Z(G)_s$ is a closed subgroup of G and $G = G_u G_s$. The assertion then follows from Lemma 4. Now assume that there exists $s \in G_s \setminus Z(G)$. Then $Z_G(s)$ is a proper closed subgroup of G , see e.g. [4, Section 8.2]. By Theorem 3 it is connected and $G = G_u Z_G(s)$. By induction hypothesis there exists a torus T such that $Z_G(s) = Z_G(s)_u T$. Then $G = G_u Z_G(s) = G_u T$ and $G = G_u \rtimes T$ by Lemma 4. \square

THEOREM 5. *Let $G = G_u \rtimes T$ be a connected solvable affine group. Then every $s \in G_s$ is conjugate to an element of T .*

Proof. We use induction on $\dim G$. We have $s = ut$ where $u \in G_u$ and $t \in T$. If G is abelian then $u = 1$ and $s = t$. Otherwise let N be the last non-trivial term of the derived series of G . By the corollary of Theorem 1 we have $N \subset G_u$. Hence N is a closed connected normal abelian unipotent subgroup of G . By Theorem 2 and the induction hypothesis there exists $x \in G$ such that $x s x^{-1} = t v$ where $v \in N$. By Lemma 2, $v = t^{-1} u t u^{-1} z$ where $u \in N$ and $z \in Z_N(t)$. Hence $x s x^{-1} = u t u^{-1} z$. Since $x s x^{-1}, u t u^{-1} \in G_s$, $z \in G_u$, and z commutes with u and t , it follows that $z = 1$ and consequently $x s x^{-1} = u t u^{-1}$. \square