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The group of all invertible n x n upper triangular matrices will be denoted
by B,. Its subgroup consisting of all diagonal matrices is denoted by D,.
We have B, = U, X D, where U, is the closed connected subgroup of B,
consisting of all unipotent elements of B,,.

We start with some preliminary facts.

TuroreM 1 (Lie-Kolchin). Every connected solvable affine algebraic group
can be embedded in some B, as a closed subgroup. ]

COROLLARY. If G is a connected solvable affine group then
G < G,. ]

THEOREM 2 (Chevalley). If N is a closed normal subgroup of an affine
group G then there exists a homomorphism f:G — GL,(k) such that
Ker f = N. []

For the proofs of Theorems 1 and 2 see, for instance, [5, Theorems 6.7
and 5.1.3].

LemMma 1. If f:G — H is a surjective homomorphism of affine algebraic
groups and N := Ker f then:

@ f(G°) = H®;

() f(G) = H, and [f(G,) = Hy;

(iii) dim G = dim N + dim H;

(iv) If N and H are connected then G is connected.

Proof. For the proofs of (i) and (ii1) see for instance [4, Section 7.4].
(ii) follows from the fact that f preserves the Jordan decomposition
[4, Theorem 2.4.8]. We shall sketch the proof of (iv). Since N is connected,
we have N < G° By (i) we have f(G° = H° = H, and consequently
G = NG° = G° O

We need a lemma to prove the centralizer theorem. For a more general
version of this lemma see [2, Proposition (9.3)].

LEMMA 2. Let N be a closed normal connected abelian unipotent subgroup
of an affine group G and let s€ G,. Then M:= {sus"'u"':ueN} isa
closed connected subgroup of N, the multiplication map p: M X Zuy(s) > N
is bijective, and Zx(s) is connected.
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Proof. Since N is abelian, the map f:N — N, defined by f(u)
— sus"'u~! is a morphism of algebraic groups whose kernel is Zy(s)
and image M, so M is a closed connected subgroup of N. If x € M n Zy(s)
then x = sus” 'u~! for some ue N. Since usu™* = x~ s = sx~ ' is semi-
simple and x is unipotent, the uniqueness of the Jordan decomposition
implies that x = 1. Hence M N Zy(s) = 1 and so p is injective. By
Lemma 1 (iii) we have dim N = dim M + dim Zy(s), which implies that the
homomorphism p is also surjective, i.e, MZy(s) = N. The same argument
shows that MZy(s)® = N, and so Zy(s) must be connected. W

THEOREM 3. If G is a connected solvable affine group and se G
then Zg(s) is connected and G = G,Zs).

Proof. We use induction on dim G. If G is abelian.the assertions are
trivial. Otherwise let N be the last non-trivial term of the derived series
of G. By the Corollary of Theorem 1, N is unipotent. We now apply
Theorem 2 to this G and N. Let f be as in that theorem. We shall write
x for f(x) and G for f(G).

Let ze G be such that ze Zg(s). Then szs 'z~ ' e N. By Lemma 2 there
exists ue N and ve Zy(s) such that szs™'z7! = sus 'u~'-v. Since v
commutes with u and s, and zsz~! .ousu™?1, it follows that v = 1.

Thus u™ 'z € Z4(s) and consequently we have a short exact sequence

:‘U_

1> Zys) & Zgls) = Zgls) = 1.

By Lemma 2, Zy(s) is connected. By Lemma 1 (iii) we have dim G < dim G.
By ind_uction hypothesis, we conclude that Zg(s) is connected and that
G = (G),- Zg(s). Now Lemma 1 (iv) implies that Zg(s) is connected. By

part (i) of the same lemma we have f(G,) = (G), and so f(G,Z(s))
= (G),Zg(s) = G. Since N < G,, it follows that G = G,Z4(s). O]

We now proceed to prove the main results about the structure of
connected solvable affine groups. But first we need two lemmas.

LEMMA 3. Let S < B, be a commuting set of semisimple elements.
Then there exists be B, suchthat b~'Sh < D,.

Proof. It is an elementary fact of linear algebra that there exists
a€ GL,(k) such that a™'Sa = D,. Hence if M,(k) is the algebra of n by n
matrices over k and A its subalgebra generated by S, we know that A
is semisimple (and commutative). Let V:= k" be the space of column
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vectors and let ey, .., e, be its standard basis. We shall view V as a left
M, (k)-module via matrix multiplication. The subspace V; spanned by the
vectors eq, .., e; 1S an A-submodule of V for each i. Since A4 is semisimple,
there exist v;€ V\V,;_,,1 <i < n, such that Av; = kv;. Thus if b is the
matrix whose i-th columnisv;, 1 <i < n,thenbeB,and b~'Sh =« D,. [

LemMma 4. If G is a connected solvable affine group, T < G, a closed
subgroup, and G = G,T then T isatorusand G = G, X T.

Proof. By the Lie-Kolchin theorem we may assume that G is a closed
subgroup of some B,. By using the projection map B, — D, we obtain a
short exact sequence 1 - G, & G 5D 1, where D < D, is a torus. Since
D = p(G) = p(G,T) = p(T), Lemma 1 (i) implies that p(T° = D. Thus
G = G,T° and using T n G, = 1 we conclude that T = T°. In particular T
1s abelian and by Lemma 3 we may assume that T < D,, ie, T = D.
Since B, = U, xD,,G,<U,, T =D < D,, and G = G,T, it follows that
G=G,xT. ]

THEOREM 4. Let G be a connected solvable affine group. Then
G = G, X T where T isa maximal torus. In particular, G, is connected.

Proof. We use induction on dim G. Assume first that G, = Z(G). Then
G, = Z(G), 1s a closed subgroup of G and G = G,G,. The assertion then
follows from Lemma 4. Now assume that there exists se G,\Z(G). Then
Zs(s) 1s a proper closed subgroup of G, see e.g. [4, Section 8.2]. By
Theorem 3 it is connected and G = G,Z4(s). By induction hypothesis there
exists a torus T such that Z4s) = Z4(s),T. Then G = G, Z4s) = G, T and
G = G, X T by Lemma 4. ]

THEOREM 5. Let G = G, X T be a connected solvable affine group.
Then every se G, is conjugate to an element of T.

Proof. We use induction on dim G. We have s = ut where u € G, and
teT. If G is abelian then u = 1 and s = t. Otherwise let N be the last
non-trivial term of the derived series of G. By the corollary of Theorem 1
we have N = G,. Hence N is a closed connected normal abelian unipotent
subgroup of G. By Theorem 2 and the induction hypothesis there exists
x e G such that xsx™! = tv where ve N. By Lemma 2, v = t lutu™ !z
where u € N and z € Z,(t). Hence xsx ™! Lutu= ! e Gy,
z € G,, and z commutes with u and ¢, it follows that z = 1 and consequently

xsx 1 = utu~ L. ]

= utu~ 'z Since xsx~
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