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134 S. A. MITCHELL

y = 51 = si(s5,€S) and x has a reduced decomposition obtained by deleting
some subset of the s’s occuring in y. (For a very nice account of these
related matters, see [14]). If W is finite, W has a unique element w,
of maximal length, we define the length of W to be l(wy).

_ § 2. ToprOLOGICAL BUILDINGS

A Tits system (G, B, N, S) consists of a group G, subgroups B and N,
and a set S, which satisfy the following axioms:

(21) Bn N is normal in N, and S is a set of involutions generating
~ W = N/Bn N,

(2.2) B and N generate G,

(2.3) IfseS, sBs # B,

(24) ifseS, we W, then sBw < BwB U BswB.

(The use of expressions such as sBw is a standard abuse of notation).

Example. Let G be a reductive algebraic group over an algebraically
closed field (e.g., GL(n, C)), let B be a Borel subgroup (e.g. upper triangular
matrices), and let N be the normalizer of a maximal torus (that lies in B).
This data determines a set S of simple reflections generating the Weyl
group W (e.g., the usual generators sy, ..., s,_; of X£,). Then one of the main
results in the structure theory of reductive groups is that (G, B, N, S) is a
Tits system (see for example [ 15]).

Throughout this paper we will assume that the set S 1s finite; its
cardinality [ is the rank of the system.
We next list some of the important properties of a Tits system.

(2.5) (Bruhat Decomposition) G :HWGWBWB (disjoint union),
(2.6) (W, S) is a Coxeter system.

A subgroup P of G is parabolic if it contains a conjugate of B. In par-
ticular if I = S, the subgroup P, generated by B and I is parabolic.

(2.7) (a) The parabolic subgroups containing B are precisely the P;, I < S.
No two of these are conjugate; in particular there are exactly 2' such
subgroups, which form a lattice isomorphic to the lattice of subsets of S.

(b) PI — BWIB

(c) Every parabolic P is self-normalizing: NoP = P.
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(2.8) (Bruhat decomposition, general version) G =HW€WI\W,WJ P,wP, (dis-
joint union).

The next result, which we will refer to as the Steinberg Lemma, is somewhat
technical; however it is not hard to prove and is extremely useful. It is a
mild generalization of Theorem 15 of [32] and Proposition 3.1 of [19].

(2.9) Let I = S and suppose w is the unique element of minimal length
of wW,. Suppose w = w; ... Wy where I[(w) = [(w,) + ... + [(w,). Then

(a) If Y, is any subset of Bw;B such that Y, - Bw;B/B is bijective
(resp. surjective) (1<i<k), then Y, x Y, .. x Y, - BwP,/P; is bijective
(resp. surjective).

(b) Suppose w;eS, 1 <i<k ie, w;..w, is a reduced decompo-
sition of w). Let Z,, 1 <i<k be any subset containing 1 of P,,
such that Z; — P, /B is surjective. Then the image of Z; x =~ Z; — G/P,
isI 1 <, BxP,/P,.

The maps in (a), (b) are the obvious multiplication/projection maps.
Part b refers to the Bruhat order on W’

(2.10) Remark. The Tits system of a reductive algebraic group has several
additional features: B = HU, where H is a maximal torus and U is a
normal unipotent subgroup, U in turn is described in terms of its root
subgroups, and there is an “opposite” Borel subgroup B~ such that
B n B~ = H. This additional structure can also be axiomatized in an
elegant way, leading to the “refined” Tits system of Kac and Peterson [19].
One then obtains, for example, the Birkhoff decomposition G =HW€WB_WB
as a consequence of the axioms.

We now define a topological Tits system to be a Tits system such that G
is a topological group, B and N are closed subgroups, and W is discrete
(le. NnB is an open subgroup of N). We will usually also assume (for
reasons which will be apparent shortly):

(2.11) Axiom. 1If I is a proper subset of S, W, is finite.

This axiom is satisfied if W is an irreducible affine Weyl group, or finite.
To get any interesting results some further axiom seems necessary. One
direction is considered in [11], where the groups in question are algebraic
groups over local fields, with the valuation topology. Here, with loop groups
in mind, the following axiom seems efficient:

(212)  Axiom. For each seS there is a subset A4, of P, such that

(a) AB = P, (b) A, is compact and contains 1, and (c) A, = A, N BsB.
This axiom is motivated by Steinberg’s approach [32].
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(2.13) ProrosiTION. Let (G, B, N, S) be a topological Tits system satisfying
(2.12). Then

(@) BwB =L1__ ,BxBweW). More generally if 1<S, and we WY,
BwP, =11 ., BxP, (here xeW!),

(b) B-orbitsin G/P; are locally closed,

(c) If W satisfies (2.11), parabolic subgroups are closed.

Proof. First we show P, = BsB. Since P; = A.B, with A, compact and

B closed, P, is closed, so P; > BsB. But also B « P, = A,B — BsB, which
proves our claim. Part (a) now follows easily from the Steinberg lemma:
Let M, :HmwaPl, and let w = s, 5, be a reduced decomposition.
Then M, = A, -~ A,P; and hence is closed. Next, suppose x < w; we must
show BxB < BwB. It is enough to consider the case when X has a reduced
decomposition x = §; = §; = 5, (omit s;). Then

BxP, = A = A} Aipq =~ A}Pp < AY "'Ai-—v‘Ii « A}P, < BwP;

(since 1€d,), where A; = A; n Bs;B. This proves (a). Part (b) is immediate
since the complement of BwP; in its closure is a finite union of sets
of the form M., hence is closed. Since P, = BW;B, (c) is also immediate
from (a).if W, is finite. H

From now on we will assume 2.11 and 2.12. The homogeneous spaces
G/P; will be called flag spaces. The B-orbits E, = BwP,/P; are Schubert

strata and the compact subspaces E are Schubert subspaces.

We next consider the building % associated to a topological Tits system
(G, B, N, S). (The notation is ambiguous—indeed in the case of loop groups,
G will support two natural but totally different Tits system. However the
system we have in mind will be clear from the context.) In the discrete
case, % is usually defined as the following simplicial complex. The vertices

are the maximal (proper) parabolics, and P, - P, span a simplex if
k
ﬂi: P contains a conjugate of B. In general it is convenient to reinterpret

this definition as follows: first of all, by definition every parabolic P is
conjugate to a unique P;; we say that P has type I. Thus the maximal
parabolics are the parabolics of type [s], where [s] = S — {s}. More
generally the k-simplices correspond to the parabolics of type I, where
|I| = [ — k — 1. Thus the simplices all have dimension < [ — 1, with the
| — 1 simplices corresponding to the conjugates of B. Furthermore, in view
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of 2.7 (c), the set of parabolics of type I is canonically identified with
G/P; — xP; corresponding to xP;x~'. One can casily check that with this
interpretation, a simplex xP; is a face of a simplex yP; if and only if
[ > J and xP; = yP,. In particular, every simplex is a face of some [ — 1
simplex. Hence, as a set, B; can be identified with G/B x A/~, where A
is the [ — 1 simplex with vertex set S, and (g9,B, X ) ~ (g,B, X)) if
X, =X = X,,XeA,, and g,P; = g,P,. (Here A; is the face of A corres-
ponding to I<S.) We will therefore define the building 4, associated to the
topological Tits system (G, B, N, S) to be G/B x A modulo this equivalence
relation, with the quotient topology.

Remark. Another way of expressing this is as follows: Let C be the
category defined by the poset of proper subsets of S (including the empty set).
We have a functor from C to topological spaces given by I+ G/P;.
Then %, is precisely the homotopy colimit of this diagram of spaces, in
the sense of [8], p. 327 ff.

(2.14) PROPOSITION. The equivalence relation on G/B x A'™' is generated
by the relations (g,B, X) ~ (9B, X) if X lies on the wall A; and
glps = QZPS'

Proof. In the usual language, (2.14) is the assertion that any two chambers
are linked by a “gallery”. (See e.g. [11], appendix.) Since the action of G
on G/B induces a well defined action on %;, we are reduced to showing
that if (B, X) ~ (gB, X)—i.e. X € A; and g € P,—then (B, X) and (9B, X)
are linked by a sequence of relations of the stated type. But gB = bwB
with we W,; hence if w = s, = s, is a reduced decomposition, the elements
(B, X), (bs;B, X), (bs;s,B, X), ... (bwB, X) provide the desired sequence. H

Note that the set A is a fundamental domain for the action of G on
%;. On the other hand, it is easy to check that the closed subspace %y,
consisting of the pairs (wB, X),we W, is a fundamental domain for the
B action. (The point is that if bw;P; = w,P;, then w,P; = w,P,, by the
Bruhat decomposition.) This space %y, which we will call the foundation
of the building, is a simplicial complex since W is discrete. Since it will turn

out that %, is in a sense a “thickening” of the foundation, the following well
known description of %4y, may be of interest.
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(2.15) PROPOSITION. Suppose @© is an irreducible root system in the
Euclidean space V. Then

(@) If W is the affine Weyl group associated to @, then By is
isomorphic as a simplicial W-complex to V (triangulated by the hyperplanes
of @).

(b) If W is the Weyl group of ®, %y is isomorphic as simplicial
W-complex to the unit sphere of V, triangulated by the Weyl chambers.
More precisely, %y can be identified with the W orbit of the outer wall
of the Cartan simplex.

Proof. For (a), map W x A SN % by identifying A with the Cartan
simplex in ¥V and using the action map. Then ¢ is onto (1.1) and further-
more ¢(w,,x) = @(w,, X,) if and only if X; = X = X,,XeA;, and
w; = w, modulo the isotropy group of X. But this isotropy group is
precisely W, (1.2), so ¢ factors through the desired isomorphism %, — V.
The proof of (b) is similar. ]

We now come to the main result of this section. Filter G/B by
FuG/B) =11,., < E,,. Similarly, % is filtered by Fi(%s) = Fi(G/B) x A/~.

(2.16) THEOREM. Let (G, B, N,S) be a topological Tits system which either
is discrete or satisfies (2.11) and (2.12). Assume also that the inclusions
F(Bs) = F,,(Bg) are cofibrations. Then

(a) If W isinfinite, A is contractible.

(b) If W is finite of length r, B is homotopy equivalent to the
(1—1) st suspension S'~' A (F,(G/B))/F,-(G/B)).

Remark. If G 1s discrete, F,%; is a subcomplex of the simplicial
complex %, so the cofibration hypothesis is automatically satisfied. Further-
more if W is finite the smash product in (b) is just a wedge of | F,G/B
— F,_,G/B | (I—1)-spheres. This case 1s due to Solomon and Tits; cf. [11].

Proof of (2.16). Let X, denote F\%B;/F, | %B;, and let X, = F,(G/B)/
F,_(G/B). Then we will show

(2.17) If k is less than the length of W, X, is contractible. If k = r
= length of W, X is homeomorphic to (F,(G/B)/F,_ (G/B)AS'™1).
If W is infinite, it follows that F, %, is contractible for all k, and hence
A is contractible. If W is finite, part (b) of the theorem is also immediate.
To prove 2.17, first consider the quotient map m: Fi(G/B) x A — X,.
In fact © is merely collapsing a subspace to a point:

-
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(2.18) Let Al = (blwlB, Xl), A2 == (szzB, Xz). If TC(Al) — TC(Az), then
either A, = A, or n(4,) = m(A,) = = (*is the basepoint Fy_Bg).

For suppose m(A,) # * and X; = A,. Then I(w;) = k and w, € W1 This
forces X; = X, and w; = wymod W;; hence w; = w, since [(w,) < k
by assumption. Then b,w,P; = b,w,;P;. But whenever we w! b,wP,
= b,wP,; implies b,wB = b,wB (easy exercise). ~

It now follows that X, = V=X, , where X,, is the image of E, x A
in X,, and to prove (2.17) we need only consider a fixed X,,. Let
X', = E,(E,—E,), and let A" be the subcomplex of A consisting of the
walls A, such that [(ws) < [(w). Then (2.18) implies:

219) X, = X, A (A/A).

For X, is E, x A modulo the subspace of points which are equivalent
(in %;) to a point of lower filtration, namely, E, x AU E,— E, x A.
It remains to identify A’. Since F,%; = A is contractible, we may assume
k> 1; then A’ is nonempty. If k < [(W), then there is at least one
se S such that [(ws) > [(w); hence A’ is not the entire boundary of A
and A/A’ is contractible. If k = [(W), then w is unique, A" = boundary of

A, and A/A" = S'”!'. This completes the proof of (2.17), and of the
theorem. ]

Remark. Our proof of Theorem 2.16 is an adaptation of the standard
(discrete) proof to the topological setting. Much of the proof depends only
on the Weyl group W, and indeed shows e.g. for W infinite that the
foundation of the building is contractible. In fact the deformation of
F(%y) into F,_,(%y) has the property that the isotropy group in B of a
point X in %, is an increasing function of time, and hence extends
uniquely to a B-equivariant deformation of Fy(Bg). In the discrete case this
extension is automatically continuous, and shows that Theorem (2.16) holds
B-equivariantly. (This was observed, (not for the first time) in [21], and has
an interesting application concerning the Steinberg representation of a finite
Chevalley group.) However this proof does not work in the topological
case; simple counterexamples show that the extension will be discontinuous.

In many cases the Bruhat decomposition of G/P is in fact a CW
decomposition. The following axioms are convenient in this regard:

(220) Axiom. For each s e S, the projection P, — P /B has a local section.

(221) Axiom. For each se S, Py/B is homeomorphic to a sphere of positive
dimension.

We then have:
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(2.22) THEOREM. Let (G, B, N,S) be a topological Tits system satisfying
axioms 2.11, 2.20 and 2.21. Let P = P; be a parabolic subgroup, I < S,
and give G/P the compactly generated topology. Then

(a) Axiom 2.12 is satisfied.

(b) The Bruhat decomposition of G/P isa CW decomposition, and the
closure relations on the cells are given by the Bruhat order on WY

(c) The building % satisfies the cofibration condition of Theorem 2.16.

Proof. By assumption there are maps D™ 5 P /B such that ¢ (B)
= D™ and D™9/0D™) — P /B is a homeomorphism. Furthermore o,
lifts to a map ¢,: D™ — P, with 1 e @(0D™"). Thus, in Axiom (2.12) we
may take A, = ¢(D™), proving (a). Since P is closed (2.13c), G/P is a
Hausdorff space. If we W' has reduced decomposition w = s; = s;, the
Steinberg lemma (2.9) shows that the multiplication map D™¢? x . x D™
— E,, (using ®,,) is a characteristic map for the cell E,. The boundary
of each cell is a finite union of cells of lower dimension by 2.13a, and
G/P has the weak topology by assumption. The closure relations also follow
from (2.13). This proves (b). For (c) we observe that %; (with the com-
pactly generated topology) is itself a CW-complex, and the filtrations
F.%; are subcomplexes: Indeed if we regard %, as a quotient space of
sts(G/PIXAI)’ it 1s clear that there is one cell for each I < S and
we W ]

If G, P; are as in the above theorem, and we W' has reduced decom-
position w = s; = s, let n(w) = n(s;) + = + n(s,). Thus n(w) = dim E,, and
so in particular is independent of the choice of reduced decomposition. Now
whenever a space has a locally finite cell decomposition, we have a cell
series Y. a;t', where g; is the number of cells of dimension i. We then have:

(2.23) COROLLARY. G/P; admits a CW—decomposition with cell series
. Z trw) ]
weWl

Note also:

(2.24) CoroLLARY. If W is finite with maximal length element wy, %q
is a sphere of dimension n(w,) + [ — 1. ]

We conclude this section with two “classical” examples. Let G be a
semisimple compact Lie group and consider the Tits system (G, B, N, S),
where B is a Borel subgroup, etc. First we claim that this is a topological
Tits system satisfying all four of our axioms. Since W is finite, (2.11) is
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trivially satisfied. In (2.12) we can take A, to be the “little SU(2)” (or
PSU(2)) G, (P, has Iwasawa decomposition P,=GB). In any case there is
a commutative diagram

G, — P

! l
CP' = G/G,n T = P/B

which proves (2.20), (2.21), and hence (2.12) simultaneously. The Bruhat
decomposition of G¢/P;, P; parabolic, is then the classical Schubert cell
decomposition of the flag variety G¢/P,. We have n(s) = 2 for all s, so
n(w) = 2I(w) for all we W' In particular the associated building %, is
a sphere of dimension 2/(w,) + | — 1 (since I(w), is the number of positive
roots, this is exactly dim G—1).

The second example (which is a generalization of the first) involves
symmetric spaces G/K and the associated semisimple real Lie group Gg
as in § 1. Thus Gg is the fixed group of the involution ¢ on G¢. Now ©
need not preserve the Borel subgroup B of G¢, but it does preserve the
parabolic Q associated to the black nodes of the Satake diagram. We will
write Bg, Ng, Wg, Sg for Q% Ngt,., Wek, Se/x» respectively.

(2.25) THEOREM. (Gg, Bg, Ny, Sg) is a topological Tits system satisfying
the four axioms. L]

A proof that this is a Tits system can be found in [33]. The parabolic
subgroups of Ggi are related in an obvious way to those of G¢: Given
I = Sg, let I' be the corresponding set in S (see §1). We denote by
C, the parabolic in Gg generated by Bg and I. Then O; = (P;)°. (Bg
is usually called a “minimal parabolic”, but this terminology conflicts with
our use of the term. From the point of view of Tits systems, it is precisely
analogous to the Borel subgroup of G.—although in general it is neither
solvable nor connected.) The rest of the theorem is also easily deduced
from [33]; the details will be omitted, but see § 5. The main point is that
for the minimal parabolics ;, (,/Bg is a sphere of dimension n;.

As for the building, one can deduce from (2.24) that it is a sphere whose
dimension is dim G/K — 1. However it is an interesting fact, that does not
seem to appear in the literature, that the building can be canonically
identified with the “tangent cut locus” of G/K: first recall (cf. [10], [20])
thatif M is a compact Riemannian manifold and p is a fixed point of M, a point
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x 18 a cut point (with respect to p) if there is a geodesic from p to x
that minimizes arc length up to x but no further. The cut locus is the set
of cut points. Similarly a vector X in the tangent space T, is a tangent
cut point if exp,X is a cut point along the geodesic exp,(tX). The tangent
cut locus 1s the set of all such points in T,, and is homeomorphic to the
unit sphere in T,. When M = G/K we take p = 1.

(2.26) THEOREM. Let G/K be a simply-connected symmetric space, with G
simple. Then the tangent cut locus is precisely the K-orbit in m of the outer
wall of the Cartan simplex A,,. It is therefore canonically identified with the
topological building of the associated real form Gyg.

As usual, the assumption G simple is just for convenience. We sketch
the proof: the first assertion is a fairly easy consequence of Theorem (1.8),
and is left to the reader. Now consider the building % . It is a quotient
space of Gg/Bg x Ay = K/Cgt,, X Ay, where A, is a simplex of dimension
(rank G/K)-1; we take A, to be the outer wall of A,,. For each
I <S¢k, let A; temporarily denote the corresponding face of Ag; i.e.
{XelAy:afx) = O0Viel}. Then the K-orbit of A, in m, KA,, is also a
quotient of K/Cgty, x A,. The relations are (k;X) ~ (k,X) if X € A, and
k, = k, mod K,. But K; = K n O, so these relations are identical to the
ones that define the building. ]

§ 3. Loor GRrours

Let LG, LG, denote the free loop spaces. Let G denote the group
of loops which are restrictions of regular maps C* — G¢, and let L,,G
= Ly,Gc n LG. Thus if we fix an embedding G = GL(n, C), L,,,G consists
of the loops f in LG admitting a finite Laurent expansion f(z) = Z:l: _mAkz",
whereas L,,G¢ consists of the loops f in LG¢ such that both f and
£~ admit finite Laurent expansions. We will also write GC for L,,Gc.
In fact éc is the group of points over C[z, z~'] of the algebraic group
Gc. Its Lie algebra is the loop algebra gc of regular maps C* — g.. The
integer m in the above Laurent expansion defines a filtration of G by
finite dimensional subspaces; we give G the corresponding weak topology.

Let P denote the subgroup of GC consisting of regular maps C — G
(ie. maps with nonnegative Laurent expansion, or G¢rp)» and let B denote
the Iwahori subgroup: {f € P: f(0) € B™ }. Finally, let N = L, ;N¢, and recall
that W can be regarded as a “subgroup” of @C, since R < Hom (S?, T)
< L,,T. More precisely, we have N [Te = W,and W = W.
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